Cargando…
FSCC: Few-Shot Learning for Macromolecule Classification Based on Contrastive Learning and Distribution Calibration in Cryo-Electron Tomography
Cryo-electron tomography (Cryo-ET) is an emerging technology for three-dimensional (3D) visualization of macromolecular structures in the near-native state. To recover structures of macromolecules, millions of diverse macromolecules captured in tomograms should be accurately classified into structur...
Autores principales: | Gao, Shan, Zeng, Xiangrui, Xu, Min, Zhang, Fa |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9294403/ https://www.ncbi.nlm.nih.gov/pubmed/35865006 http://dx.doi.org/10.3389/fmolb.2022.931949 |
Ejemplares similares
-
One-Shot Learning With Attention-Guided Segmentation in Cryo-Electron Tomography
por: Zhou, Bo, et al.
Publicado: (2021) -
Few-shot learning for classification of novel macromolecular structures in cryo-electron tomograms
por: Li, Ran, et al.
Publicado: (2020) -
Macromolecules Structural Classification with a 3D Dilated Dense Network in Cryo-electron Tomography
por: Gao, Shan, et al.
Publicado: (2022) -
Quantitative Cryo-Electron Tomography
por: Navarro, Paula P.
Publicado: (2022) -
Few-shot contrastive learning for image classification and its application to insulator identification
por: Li, Liang, et al.
Publicado: (2021)