Cargando…
BioAutoML: automated feature engineering and metalearning to predict noncoding RNAs in bacteria
Recent technological advances have led to an exponential expansion of biological sequence data and extraction of meaningful information through Machine Learning (ML) algorithms. This knowledge has improved the understanding of mechanisms related to several fatal diseases, e.g. Cancer and coronavirus...
Autores principales: | Bonidia, Robson P, Santos, Anderson P Avila, de Almeida, Breno L S, Stadler, Peter F, da Rocha, Ulisses N, Sanches, Danilo S, de Carvalho, André C P L F |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9294424/ https://www.ncbi.nlm.nih.gov/pubmed/35753697 http://dx.doi.org/10.1093/bib/bbac218 |
Ejemplares similares
-
MathFeature: feature extraction package for DNA, RNA and protein sequences based on mathematical descriptors
por: Bonidia, Robson P, et al.
Publicado: (2021) -
TACOS: a novel approach for accurate prediction of cell-specific long noncoding RNAs subcellular localization
por: Jeon, Young-Jun, et al.
Publicado: (2022) -
Addressing noise in co-expression network construction
por: Burns, Joshua J R, et al.
Publicado: (2021) -
Information Theory for Biological Sequence Classification: A Novel Feature Extraction Technique Based on Tsallis Entropy
por: Bonidia, Robson P., et al.
Publicado: (2022) -
ARAMIS: From systematic errors of NGS long reads to accurate assemblies
por: Sacristán-Horcajada, E, et al.
Publicado: (2021)