Cargando…
Discovering gene regulatory networks of multiple phenotypic groups using dynamic Bayesian networks
Dynamic Bayesian networks (DBNs) can be used for the discovery of gene regulatory networks (GRNs) from time series gene expression data. Here, we suggest a strategy for learning DBNs from gene expression data by employing a Bayesian approach that is scalable to large networks and is targeted at lear...
Autores principales: | Suter, Polina, Kuipers, Jack, Beerenwinkel, Niko |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9294428/ https://www.ncbi.nlm.nih.gov/pubmed/35679575 http://dx.doi.org/10.1093/bib/bbac219 |
Ejemplares similares
-
CORN—Condition Orientated Regulatory Networks: bridging conditions to gene networks
por: Leung, Ricky Wai Tak, et al.
Publicado: (2022) -
SIGNET: single-cell RNA-seq-based gene regulatory network prediction using multiple-layer perceptron bagging
por: Luo, Qinhuan, et al.
Publicado: (2021) -
Joint reconstruction of cis-regulatory interaction networks across multiple tissues using single-cell chromatin accessibility data
por: Dong, Kangning, et al.
Publicado: (2020) -
Multi-omics regulatory network inference in the presence of missing data
por: Henao, Juan D, et al.
Publicado: (2023) -
Network-based identification of key master regulators associated with an immune-silent cancer phenotype
por: Mall, Raghvendra, et al.
Publicado: (2021)