Cargando…
KLFDAPC: a supervised machine learning approach for spatial genetic structure analysis
Geographic patterns of human genetic variation provide important insights into human evolution and disease. A commonly used tool to detect and describe them is principal component analysis (PCA) or the supervised linear discriminant analysis of principal components (DAPC). However, genetic features...
Autores principales: | Qin, Xinghu, Chiang, Charleston W K, Gaggiotti, Oscar E |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9294434/ https://www.ncbi.nlm.nih.gov/pubmed/35649387 http://dx.doi.org/10.1093/bib/bbac202 |
Ejemplares similares
-
Deciphering signatures of natural selection via deep learning
por: Qin, Xinghu, et al.
Publicado: (2022) -
SMG: self-supervised masked graph learning for cancer gene identification
por: Cui, Yan, et al.
Publicado: (2023) -
Self-supervised contrastive learning for integrative single cell RNA-seq data analysis
por: Han, Wenkai, et al.
Publicado: (2022) -
Machine learning for RNA 2D structure prediction benchmarked on experimental data
por: Justyna, Marek, et al.
Publicado: (2023) -
scDeepInsight: a supervised cell-type identification method for scRNA-seq data with deep learning
por: Jia, Shangru, et al.
Publicado: (2023)