Cargando…
Two-stage hybrid network for segmentation of COVID-19 pneumonia lesions in CT images: a multicenter study
COVID-19 has been spreading continuously since its outbreak, and the detection of its manifestations in the lung via chest computed tomography (CT) imaging is essential to investigate the diagnosis and prognosis of COVID-19 as an indispensable step. Automatic and accurate segmentation of infected le...
Autores principales: | Shang, Yaxin, Wei, Zechen, Hui, Hui, Li, Xiaohu, Li, Liang, Yu, Yongqiang, Lu, Ligong, Li, Li, Li, Hongjun, Yang, Qi, Wang, Meiyun, Zhan, Meixiao, Wang, Wei, Zhang, Guanghao, Wu, Xiangjun, Wang, Li, Liu, Jie, Tian, Jie, Zha, Yunfei |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9294771/ https://www.ncbi.nlm.nih.gov/pubmed/35856130 http://dx.doi.org/10.1007/s11517-022-02619-8 |
Ejemplares similares
-
Deep learning-based multi-view fusion model for screening 2019 novel coronavirus pneumonia: A multicentre study
por: Wu, Xiangjun, et al.
Publicado: (2020) -
A fully automatic deep learning system for COVID-19 diagnostic and prognostic analysis
por: Wang, Shuo, et al.
Publicado: (2020) -
DBFU-Net: Double branch fusion U-Net with hard example weighting train strategy to segment retinal vessel
por: Huang, Jianping, et al.
Publicado: (2022) -
Development and multicenter validation of a CT-based radiomics signature for predicting severe COVID-19 pneumonia
por: Li, Liang, et al.
Publicado: (2021) -
Radiomics Analysis of Computed Tomography helps predict poor prognostic outcome in COVID-19
por: Wu, Qingxia, et al.
Publicado: (2020)