Cargando…
Dimension constraints improve hypothesis testing for large-scale, graph-associated, brain-image data
For large-scale testing with graph-associated data, we present an empirical Bayes mixture technique to score local false-discovery rates (FDRs). Compared to procedures that ignore the graph, the proposed Graph-based Mixture Model (GraphMM) method gains power in settings where non-null cases form con...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9295049/ https://www.ncbi.nlm.nih.gov/pubmed/33616173 http://dx.doi.org/10.1093/biostatistics/kxab001 |