Cargando…
Dimension constraints improve hypothesis testing for large-scale, graph-associated, brain-image data
For large-scale testing with graph-associated data, we present an empirical Bayes mixture technique to score local false-discovery rates (FDRs). Compared to procedures that ignore the graph, the proposed Graph-based Mixture Model (GraphMM) method gains power in settings where non-null cases form con...
Autores principales: | Vo, Tien, Mishra, Akshay, Ithapu, Vamsi, Singh, Vikas, Newton, Michael A |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9295049/ https://www.ncbi.nlm.nih.gov/pubmed/33616173 http://dx.doi.org/10.1093/biostatistics/kxab001 |
Ejemplares similares
-
Distributed Hypothesis Testing with Privacy Constraints
por: Gilani, Atefeh, et al.
Publicado: (2019) -
MixTwice: large-scale hypothesis testing for peptide arrays by variance mixing
por: Zheng, Zihao, et al.
Publicado: (2021) -
Stouffer’s Test in a Large Scale Simultaneous Hypothesis Testing
por: Kim, Sang Cheol, et al.
Publicado: (2013) -
A large scale test of the gaming-enhancement hypothesis
por: Przybylski, Andrew K., et al.
Publicado: (2016) -
Stability constraints on large-scale structural brain networks
por: Gray, Richard T., et al.
Publicado: (2013)