Cargando…

Bridging Plastic Recycling and Organic Catalysis: Photocatalytic Deconstruction of Polystyrene via a C–H Oxidation Pathway

[Image: see text] Chemical recycling of synthetic polymers represents a promising strategy to deconstruct plastic waste and make valuable products. Inspired by small-molecule C–H bond activation, a visible-light-driven reaction is developed to deconstruct polystyrene (PS) into ∼40% benzoic acid as w...

Descripción completa

Detalles Bibliográficos
Autores principales: Li, Tengfei, Vijeta, Arjun, Casadevall, Carla, Gentleman, Alexander S., Euser, Tijmen, Reisner, Erwin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2022
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9295126/
https://www.ncbi.nlm.nih.gov/pubmed/35874621
http://dx.doi.org/10.1021/acscatal.2c02292
Descripción
Sumario:[Image: see text] Chemical recycling of synthetic polymers represents a promising strategy to deconstruct plastic waste and make valuable products. Inspired by small-molecule C–H bond activation, a visible-light-driven reaction is developed to deconstruct polystyrene (PS) into ∼40% benzoic acid as well as ∼20% other monomeric aromatic products at 50 °C and ambient pressure. The practicality of this strategy is demonstrated by deconstruction of real-world PS foam on a gram scale. The reaction is proposed to proceed via a C–H bond oxidation pathway, which is supported by theoretical calculations and experimental results. Fluorescence quenching experiments also support efficient electron transfer between the photocatalyst and the polymer substrate, providing further evidence for the proposed mechanism. This study introduces concepts from small-molecule catalysis to polymer deconstruction and provides a promising method to tackle the global crisis of plastic pollution.