Cargando…
An Intein-Mediated Split–nCas9 System for Base Editing in Plants
[Image: see text] Virus-assisted delivery of the clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated (Cas) system represents a promising approach for editing plant genomes. Among the CRISPR/Cas systems, CRISPR/Cas9 is most widely used; however, to pack the relatively...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2022
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9295155/ https://www.ncbi.nlm.nih.gov/pubmed/35767601 http://dx.doi.org/10.1021/acssynbio.1c00507 |
Sumario: | [Image: see text] Virus-assisted delivery of the clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated (Cas) system represents a promising approach for editing plant genomes. Among the CRISPR/Cas systems, CRISPR/Cas9 is most widely used; however, to pack the relatively large size of the CRISPR/Cas9 system into viral vectors with confined packaging capacity is challenging. To address this technical challenge, we developed a strategy based on split inteins that splits the required CRISPR/Cas9 components across a dual-vector system. The CRISPR/Cas reassembles into an active form following co-infection to achieve targeted genome editing in plant cells. An intein-mediated split system was adapted and optimized in plant cells by a successful demonstration of split-eYGFPuv expression. Using a plant-based biosensor, we demonstrated for the first time that the split-nCas9 can induce efficient base editing in plant cells. We identified several split sites for future biodesign strategies. Overall, this strategy provides new opportunities to bridge different CRISPR/Cas9 tools including base editor, prime editor, and CRISPR activation with virus-mediated gene editing. |
---|