Cargando…
Predicting neurological outcomes after in-hospital cardiac arrests for patients with Coronavirus Disease 2019
BACKGROUND: Machine learning models are more accurate than standard tools for predicting neurological outcomes in patients resuscitated after cardiac arrest. However, their accuracy in patients with Coronavirus Disease 2019 (COVID-19) is unknown. Therefore, we compared their performance in a cohort...
Autores principales: | Mayampurath, Anoop, Bashiri, Fereshteh, Hagopian, Raffi, Venable, Laura, Carey, Kyle, Edelson, Dana, Churpek, Matthew |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier B.V.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9295318/ https://www.ncbi.nlm.nih.gov/pubmed/35868590 http://dx.doi.org/10.1016/j.resuscitation.2022.07.018 |
Ejemplares similares
-
Combining patient visual timelines with deep learning to predict mortality
por: Mayampurath, Anoop, et al.
Publicado: (2019) -
Association Between Critical Events in the PICU and Outcomes in Neighboring Patients
por: Arshad, Ahmed, et al.
Publicado: (2022) -
In-hospital cardiac arrest in patients with coronavirus 2019
por: Mitchell, Oscar J.L., et al.
Publicado: (2021) -
Epinephrine before defibrillation in patients with shockable in-hospital cardiac arrest: propensity matched analysis
por: Evans, Erin, et al.
Publicado: (2021) -
Predicting cardiac arrest in the emergency department
por: Mitchell, Oscar J.L., et al.
Publicado: (2020)