Cargando…

Integration of single-cell multi-omics data by regression analysis on unpaired observations

Despite recent developments, it is hard to profile all multi-omics single-cell data modalities on the same cell. Thus, huge amounts of single-cell genomics data of unpaired observations on different cells are generated. We propose a method named UnpairReg for the regression analysis on unpaired obse...

Descripción completa

Detalles Bibliográficos
Autores principales: Yuan, Qiuyue, Duren, Zhana
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9295346/
https://www.ncbi.nlm.nih.gov/pubmed/35854350
http://dx.doi.org/10.1186/s13059-022-02726-7
Descripción
Sumario:Despite recent developments, it is hard to profile all multi-omics single-cell data modalities on the same cell. Thus, huge amounts of single-cell genomics data of unpaired observations on different cells are generated. We propose a method named UnpairReg for the regression analysis on unpaired observations to integrate single-cell multi-omics data. On real and simulated data, UnpairReg provides an accurate estimation of cell gene expression where only chromatin accessibility data is available. The cis-regulatory network inferred from UnpairReg is highly consistent with eQTL mapping. UnpairReg improves cell type identification accuracy by joint analysis of single-cell gene expression and chromatin accessibility data. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s13059-022-02726-7.