Cargando…
Depleting TMED3 alleviates the development of endometrial carcinoma
BACKGROUND: As one of gynecologic tumors, endometrial carcinoma (EC) has been characterized by high incidence rate, but its molecular pathogenesis has remained unclear. TMED3 is a membrane protein and has been indicated to implicate several tumor-related diseases. In the current study, we aimed to e...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9295347/ https://www.ncbi.nlm.nih.gov/pubmed/35854294 http://dx.doi.org/10.1186/s12935-022-02649-0 |
Sumario: | BACKGROUND: As one of gynecologic tumors, endometrial carcinoma (EC) has been characterized by high incidence rate, but its molecular pathogenesis has remained unclear. TMED3 is a membrane protein and has been indicated to implicate several tumor-related diseases. In the current study, we aimed to explore the physiological function of TMED3 in EC progression. METHODS: Through bioinformatic analysis using The Cancer Genome Atlas database and immunohistochemistry assay on tissue microarray, we examined whether TMED3 was upregulated in EC tissues. After constructing TMED3-knockdown cell models via lentiviral transfection, qPCR and western blot were employed to determine the expression levels of TMED3 mRNA and protein. Then, Celigo cell counting assay, CCK8 assay, flow cytometry, wound-healing assay and Transwell assay were used to detect cell proliferation, cell cycle, cell apoptosis and cell migration, respectively. RESULTS: As a result, it was found that TMED3 was upregulated in EC cells, which was also verified in clinical samples. We then found that downregulation of TMED3 considerably restrained cell cycle, cell growth and migration but promoted apoptosis of EC cells. The following in-vivo experiments also verified that tumor growth was inhibited after TMED3 knockdown. The exploration in molecular mechanisms showed that TMED3 deletion may weaken cellular viability through upregulating pro-apoptotic proteins and targeting PI3K/AKT signaling pathways. CONCLUSIONS: This study suggested that knocking down TMED3 affected the malignant phenotype of EC cells and thus limited tumor progression, which provided insights to the development of targeted drugs for EC treatment. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s12935-022-02649-0. |
---|