Cargando…

A dual-stage deep convolutional neural network for automatic diagnosis of COVID-19 and pneumonia from chest CT images()

In the Coronavirus disease-2019 (COVID-19) pandemic, for fast and accurate diagnosis of a large number of patients, besides traditional methods, automated diagnostic tools are now extremely required. In this paper, a deep convolutional neural network (CNN) based scheme is proposed for automated accu...

Descripción completa

Detalles Bibliográficos
Autores principales: Sadik, Farhan, Dastider, Ankan Ghosh, Subah, Mohseu Rashid, Mahmud, Tanvir, Fattah, Shaikh Anowarul
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier Ltd. 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9295386/
https://www.ncbi.nlm.nih.gov/pubmed/35994932
http://dx.doi.org/10.1016/j.compbiomed.2022.105806
Descripción
Sumario:In the Coronavirus disease-2019 (COVID-19) pandemic, for fast and accurate diagnosis of a large number of patients, besides traditional methods, automated diagnostic tools are now extremely required. In this paper, a deep convolutional neural network (CNN) based scheme is proposed for automated accurate diagnosis of COVID-19 from lung computed tomography (CT) scan images. First, for the automated segmentation of lung regions in a chest CT scan, a modified CNN architecture, namely SKICU-Net is proposed by incorporating additional skip interconnections in the U-Net model that overcome the loss of information in dimension scaling. Next, an agglomerative hierarchical clustering is deployed to eliminate the CT slices without significant information. Finally, for effective feature extraction and diagnosis of COVID-19 and pneumonia from the segmented lung slices, a modified DenseNet architecture, namely P-DenseCOVNet is designed where parallel convolutional paths are introduced on top of the conventional DenseNet model for getting better performance through overcoming the loss of positional arguments. Outstanding performances have been achieved with an [Formula: see text] score of 0.97 in the segmentation task along with an accuracy of 87.5% in diagnosing COVID-19, common pneumonia, and normal cases. Significant experimental results and comparison with other studies show that the proposed scheme provides very satisfactory performances and can serve as an effective diagnostic tool in the current pandemic.