Cargando…
CRISPR-Cas systems: role in cellular processes beyond adaptive immunity
Clustered regularly interspaced short palindromic repeats and associated Cas proteins (CRISPR-Cas) are the only known adaptive immune system in prokaryotes. CRISPR-Cas system provides sequence-specific immunity against invasion by foreign genetic elements. It carries out its functions by incorporati...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Netherlands
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9296112/ https://www.ncbi.nlm.nih.gov/pubmed/35854181 http://dx.doi.org/10.1007/s12223-022-00993-2 |
Sumario: | Clustered regularly interspaced short palindromic repeats and associated Cas proteins (CRISPR-Cas) are the only known adaptive immune system in prokaryotes. CRISPR-Cas system provides sequence-specific immunity against invasion by foreign genetic elements. It carries out its functions by incorporating a small part of the invading DNA sequence, termed as spacer into the CRISPR array. Although the CRISPR-Cas systems are mainly responsible for adaptive immune functions, their alternative role in the gene regulation, bacterial pathophysiology, virulence, and evolution has started to unravel. In several species, these systems are revealed to regulate the processes beyond adaptive immunity by employing various components of CRISPR-Cas machinery, independently or in combination. The molecular mechanisms entailing the regulatory processes are not clear in most of the instances. In this review, we have discussed some well-known and some recently established noncanonical functions of CRISPR-Cas system and its fast-extending applications in other biological processes. |
---|