Cargando…

Glycoproteomic identification of novel plasma biomarkers for oral cancer

Oral cancer with high incidence rates is occurring in many countries including in India, Pakistan, Bangladesh, Sri Lanka and Taiwan. Smoking, alcoholism, and betel nut chewing are considered to be the main risk factors for oral cancer. Further, deaths from oral cancer have increased year by year. Al...

Descripción completa

Detalles Bibliográficos
Autores principales: Chang, Shu-Chieh, Lin, Wei-Ling, Chang, Yin-Fan, Lee, Chih-Ting, Wu, Jin-Shang, Hsu, Pang-Hung, Chang, Chuan-Fa
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Taiwan Food and Drug Administration 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9296197/
https://www.ncbi.nlm.nih.gov/pubmed/30987719
http://dx.doi.org/10.1016/j.jfda.2018.12.008
Descripción
Sumario:Oral cancer with high incidence rates is occurring in many countries including in India, Pakistan, Bangladesh, Sri Lanka and Taiwan. Smoking, alcoholism, and betel nut chewing are considered to be the main risk factors for oral cancer. Further, deaths from oral cancer have increased year by year. Although several oral cancer-associated biomarkers have been reported, very few useful biomarkers have been applied for early diagnosis. Therefore, the investigation of oral cancer-specific biomarkers is urgently needed. We previously investigated N-glycomes of oral cancer cells and patient plasma. We found that both mRNA levels of FUT8 and core-fucosylated glycoproteins increase in cases of oral cancer relative to normal cases. In this study we aim to discover novel core-fucosylated glycoprotein biomarkers for oral cancer diagnosis with glycoproteomic approaches. First, forty plasma samples obtained from the Human Bioinformation Bank of NCKUH were subjected to AAL (Aleuria aurantia lectin) affinity chromatography. Core-fucosylated proteins were collected and applied for LC-MS/MS followed by electrophoresis. Fourteen proteins were identified, and expression levels of proteins in plasma were verified by western blot. Expression levels of some glycoproteins were elevated in the oral cancer group, including ceruloplasmin, haptoglobin, and leucin-rich alpha-2-glycoprotein 1 (LRG1). However, levels of some glycoproteins decreased in the cancer group, including apolipoprotein A-I (apo A-I) and apolipoprotein A-IV (apo A-IV). Via ELISA analysis, we found that apo A-IV and apo A-IV/ total protein ratios were decreased in plasma accompanied with cancer stages. The LRG1/total protein ratio was found to increase while plasma levels of LRG1 were not found to differ between the oral cancer plasma and normal groups. An ROC curve analysis reveals strong diagnosis performance when combining apo A-IV levels and LRG1/total protein ratios. Taken together, apo A-IV and LRG1, given their strong performance in detecting oral cancer, can serve as useful biomarkers and may be used as a useful tool for oral cancer screening and early diagnosis.