Cargando…

“Low Dose MR” Dixon Technique for Imaging FDG PET-MR Lymphoma

Introduction  Hybrid PET-MR is a relatively new imaging modality with its major strength being the MR component offering superior soft tissue contrast. While PET/MRI offers the inherent advantage of reduced radiation dose, it has been shown to result in a markedly prolonged examination time becoming...

Descripción completa

Detalles Bibliográficos
Autores principales: Mufti, Musa Ali, Matthews, Robert, Madu, Ezemonye, Yaddanapudi, Kavitha, Franceschi, Dinko
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Thieme Medical and Scientific Publishers Pvt. Ltd. 2022
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9296239/
https://www.ncbi.nlm.nih.gov/pubmed/35865157
http://dx.doi.org/10.1055/s-0042-1750330
Descripción
Sumario:Introduction  Hybrid PET-MR is a relatively new imaging modality with its major strength being the MR component offering superior soft tissue contrast. While PET/MRI offers the inherent advantage of reduced radiation dose, it has been shown to result in a markedly prolonged examination time becoming a challenge in children and sick patients. "Low dose MRI" is a term used in the nuclear medicine community to describe fast acquired PET-MR scan protocols that rely heavily on PET images for diagnosis. In this study, we sought to determine if the Dixon sequences obtained for attenuation correction could be used as a diagnostic sequence for interpreting PET-MRI lymphoma cases, potentially reducing scan time. Materials and Methods  We retrospectively identified 40 patients who underwent (88) FDG PET-MR body imaging studies for staging or restaging lymphoma. A radiologist and nuclear medicine physician initially reviewed top of the head to mid thigh PET images, attenuation correction coronal Dixon MRI sequences, and PET-MR fusion with Dixon sequence. The same physicians reviewed the PET images, multi-sequence MR including the attenuation correction Dixon, and multi-sequence PET-MR fusion images The lesions were further characterized based on their imaging characteristics, size, SUVmax, and malignant potency. A consensus read followed. Results   All patients were adults with an average study age of 43.8 years. Our study consisted of 40 females and 48 males out of which 7 were for staging and 81 were for re-staging. All patients had systemic lymphoma. Thirty-seven of the studies had active lymph nodes on Dixon PET-MR that agreed with multi-sequence PET-MR which identified 33 positive cases (89.1%) having an average SUV 10.2 ± 7.74 SD. Four Dixon PET-MR cases did not detect lesions, with an average SUV 2.3 ± 0.55 SD, which was read as minimal residual activity. Multi-sequence MR identified 11 patients with enlarged lymph nodes without FDG uptake, which were not seen on Dixon MR. All 5 studies with bones lesions were detected by Dixon PET-MR as well as 2 soft tissue organ lesions. Multi-sequence MR identified 1 patient with non-active, healed bone lesion. Fifty-five of these studies were true negatives. Compared to multi-sequence PET-MR, Dixon PET-MR demonstrated 89.2% sensitivity, 100% specificity with no false positive studies. Conclusion   The present study investigated the diagnostic potential of a fast protocol for integrated PET/MRI used for dedicated tumor staging of patients with lymphoma. In this retrospective study, Dixon PET-MR was shown to be sensitive and specific compared to multi-sequence PET-MR in the detection of lymphoma. The low number of these cases not detected had minimally active lymph nodes that resolved on subsequent imaging and probably were not clinically important.