Cargando…
A New Non-stationary High-order Spatial Sequential Simulation Method
A new non-stationary, high-order sequential simulation method is presented herein, aiming to accommodate complex curvilinear patterns when modelling non-Gaussian, spatially distributed and variant attributes of natural phenomena. The proposed approach employs spatial templates, training images and a...
Autores principales: | Haji Abolhassani, Amir Abbas, Dimitrakopoulos, Roussos, Ferrie, Frank P., Yao, Lingqing |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9296435/ https://www.ncbi.nlm.nih.gov/pubmed/35873657 http://dx.doi.org/10.1007/s11004-022-10004-2 |
Ejemplares similares
-
High-Order Sequential Simulation via Statistical Learning in Reproducing Kernel Hilbert Space
por: Yao, Lingqing, et al.
Publicado: (2019) -
A New Computational Model of High-Order Stochastic Simulation Based on Spatial Legendre Moments
por: Yao, Lingqing, et al.
Publicado: (2018) -
Training Image Free High-Order Stochastic Simulation Based on Aggregated Kernel Statistics
por: Yao, Lingqing, et al.
Publicado: (2021) -
High-Order Spatial Simulation Using Legendre-Like Orthogonal Splines
por: Minniakhmetov, Ilnur, et al.
Publicado: (2018) -
Stationary Anonymous Sequential Games with Undiscounted Rewards
por: Więcek, Piotr, et al.
Publicado: (2014)