Cargando…
Towards a comprehensive evaluation of dimension reduction methods for transcriptomic data visualization
Dimension reduction (DR) algorithms project data from high dimensions to lower dimensions to enable visualization of interesting high-dimensional structure. DR algorithms are widely used for analysis of single-cell transcriptomic data. Despite widespread use of DR algorithms such as t-SNE and UMAP,...
Autores principales: | Huang, Haiyang, Wang, Yingfan, Rudin, Cynthia, Browne, Edward P. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9296444/ https://www.ncbi.nlm.nih.gov/pubmed/35853932 http://dx.doi.org/10.1038/s42003-022-03628-x |
Ejemplares similares
-
Principal Manifolds for Data Visualization and Dimension Reduction
por: Gorban, A N, et al.
Publicado: (2007) -
Alignment-free Visualization of Metagenomic Data by Nonlinear Dimension Reduction
por: Laczny, Cedric C., et al.
Publicado: (2014) -
Spatially aware dimension reduction for spatial transcriptomics
por: Shang, Lulu, et al.
Publicado: (2022) -
Towards the visualization of genome activity at nanoscale dimensions
por: Politz, Joan C Ritland
Publicado: (2006) -
Comparative study of unsupervised dimension reduction techniques for the visualization of microarray gene expression data
por: Bartenhagen, Christoph, et al.
Publicado: (2010)