Cargando…
Comparing N-mixture models and GLMMs for relative abundance estimation in a citizen science dataset
To analyze species count data when detection is imperfect, ecologists need models to estimate relative abundance in the presence of unknown sources of heterogeneity. Two candidate models are generalized linear mixed models (GLMMs) and hierarchical N-mixture models. GLMMs are computationally robust b...
Autores principales: | Goldstein, Benjamin R., de Valpine, Perry |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9296480/ https://www.ncbi.nlm.nih.gov/pubmed/35853908 http://dx.doi.org/10.1038/s41598-022-16368-z |
Ejemplares similares
-
Identifying engaging bird species and traits with community science observations
por: Stoudt, Sara, et al.
Publicado: (2022) -
Optimization of Gas Sensors Based on Advanced Nanomaterials through Split-Plot Designs and GLMMs
por: Berni, Rossella, et al.
Publicado: (2018) -
N-mixture models reliably estimate the abundance of small vertebrates
por: Ficetola, Gentile Francesco, et al.
Publicado: (2018) -
A practical guide and power analysis for GLMMs: detecting among treatment variation in random effects
por: Kain, Morgan P., et al.
Publicado: (2015) -
Estimating Lion Abundance using N-mixture Models for Social Species
por: Belant, Jerrold L., et al.
Publicado: (2016)