Cargando…
Radiomics in photon-counting dedicated breast CT: potential of texture analysis for breast density classification
BACKGROUND: We investigated whether features derived from texture analysis (TA) can distinguish breast density (BD) in spiral photon-counting breast computed tomography (PC-BCT). METHODS: In this retrospective single-centre study, we analysed 10,000 images from 400 PC-BCT examinations of 200 patient...
Autores principales: | Landsmann, Anna, Ruppert, Carlotta, Wieler, Jann, Hejduk, Patryk, Ciritsis, Alexander, Borkowski, Karol, Wurnig, Moritz C., Rossi, Cristina, Boss, Andreas |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Vienna
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9296720/ https://www.ncbi.nlm.nih.gov/pubmed/35854186 http://dx.doi.org/10.1186/s41747-022-00285-x |
Ejemplares similares
-
Applied Machine Learning in Spiral Breast-CT: Can We Train a Deep Convolutional Neural Network for Automatic, Standardized and Observer Independent Classification of Breast Density?
por: Landsmann, Anna, et al.
Publicado: (2022) -
Detecting Abnormal Axillary Lymph Nodes on Mammograms Using a Deep Convolutional Neural Network
por: Abel, Frederik, et al.
Publicado: (2022) -
Generalizable attention U-Net for segmentation of fibroglandular tissue and background parenchymal enhancement in breast DCE-MRI
por: Nowakowska, Sylwia, et al.
Publicado: (2023) -
BI-RADS-Based Classification of Mammographic Soft Tissue Opacities Using a Deep Convolutional Neural Network
por: Sabani, Albin, et al.
Publicado: (2022) -
Fully automatic classification of automated breast ultrasound (ABUS) imaging according to BI-RADS using a deep convolutional neural network
por: Hejduk, Patryk, et al.
Publicado: (2022)