Cargando…
Meta-Learning for Decoding Neural Activity Data With Noisy Labels
In neural decoding, a behavioral variable is often generated by manual annotation and the annotated labels could contain extensive label noise, leading to poor model generalizability. Tackling the label noise problem in neural decoding can improve model generalizability and robustness. We use a deep...
Autores principales: | Xu, Dongfang, Chen, Rong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9296819/ https://www.ncbi.nlm.nih.gov/pubmed/35874318 http://dx.doi.org/10.3389/fncom.2022.913617 |
Ejemplares similares
-
Robust EEG-Based Decoding of Auditory Attention With High-RMS-Level Speech Segments in Noisy Conditions
por: Wang, Lei, et al.
Publicado: (2020) -
Post-hoc Labeling of Arbitrary M/EEG Recordings for Data-Efficient Evaluation of Neural Decoding Methods
por: Castaño-Candamil, Sebastián, et al.
Publicado: (2019) -
A parameter-optimization framework for neural decoding systems
por: Xie, Jing, et al.
Publicado: (2023) -
The neural decoding toolbox
por: Meyers, Ethan M.
Publicado: (2013) -
Mutual information measure of visual perception based on noisy spiking neural networks
por: Xu, Ziheng, et al.
Publicado: (2023)