Cargando…
Deep convolutional neural networks for detection of abnormalities in chest X-rays trained on the very large dataset
One of the main challenges in the current pandemic is the detection of coronavirus. Conventional techniques (PT-PCR) have their limitations such as long response time and limited accessibility. On the other hand, X-ray machines are widely available and they are already digitized in the health system...
Autores principales: | Aktas, Kadir, Ignjatovic, Vuk, Ilic, Dragan, Marjanovic, Marina, Anbarjafari, Gholamreza |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer London
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9296894/ https://www.ncbi.nlm.nih.gov/pubmed/35873389 http://dx.doi.org/10.1007/s11760-022-02309-w |
Ejemplares similares
-
A Comparison of Neural Networks and Center of Gravity in Muon Hit Position Estimation
por: Aktas, Kadir, et al.
Publicado: (2022) -
Convolutional neural networks for the classification of chest X-rays in the IoT era
por: Almezhghwi, Khaled, et al.
Publicado: (2021) -
REFLACX, a dataset of reports and eye-tracking data for localization of abnormalities in chest x-rays
por: Bigolin Lanfredi, Ricardo, et al.
Publicado: (2022) -
Effective Utilization of Multiple Convolutional Neural Networks for Chest X-Ray Classification
por: Rammuni Silva, Ravidu Suien, et al.
Publicado: (2022) -
Abnormal Chest X-ray Postmyocardial Infarction
por: Abuosa, Ahmed M., et al.
Publicado: (2014)