Cargando…
Monic Chebyshev pseudospectral differentiation matrices for higher-order IVPs and BVPs: applications to certain types of real-life problems
We introduce new differentiation matrices based on the pseudospectral collocation method. Monic Chebyshev polynomials (MCPs) were used as trial functions in differentiation matrices (D-matrices). Those matrices have been used to approximate the solutions of higher-order ordinary differential equatio...
Autores principales: | Abdelhakem, M., Ahmed, A., Baleanu, D., El-kady, M. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9297062/ http://dx.doi.org/10.1007/s40314-022-01940-0 |
Ejemplares similares
-
Quantum calculus: new concepts, impulsive IVPs and BVPs, inequalities
por: Ahmad, Bashir, et al.
Publicado: (2016) -
General computational methods of Chebyshev approximation: the problems with linear real parameters
por: Remez, E Ya
Publicado: (1962) -
Reentry Trajectory Optimization Based on a Multistage Pseudospectral Method
por: Zhao, Jiang, et al.
Publicado: (2014) -
Operational matrices based on the shifted fifth-kind Chebyshev polynomials for solving nonlinear variable order integro-differential equations
por: Jafari, H., et al.
Publicado: (2021) -
Stability of Nonlinear Dirichlet BVPs Governed by Fractional Laplacian
por: Bors, Dorota
Publicado: (2014)