Cargando…
Machine Learning–Derived Prenatal Predictive Risk Model to Guide Intervention and Prevent the Progression of Gestational Diabetes Mellitus to Type 2 Diabetes: Prediction Model Development Study
BACKGROUND: The increasing prevalence of gestational diabetes mellitus (GDM) is concerning as women with GDM are at high risk of type 2 diabetes (T2D) later in life. The magnitude of this risk highlights the importance of early intervention to prevent the progression of GDM to T2D. Rates of postpart...
Autores principales: | Kumar, Mukkesh, Ang, Li Ting, Ho, Cindy, Soh, Shu E, Tan, Kok Hian, Chan, Jerry Kok Yen, Godfrey, Keith M, Chan, Shiao-Yng, Chong, Yap Seng, Eriksson, Johan G, Feng, Mengling, Karnani, Neerja |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
JMIR Publications
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9297138/ https://www.ncbi.nlm.nih.gov/pubmed/35788016 http://dx.doi.org/10.2196/32366 |
Ejemplares similares
-
Automated Machine Learning (AutoML)-Derived Preconception Predictive Risk Model to Guide Early Intervention for Gestational Diabetes Mellitus
por: Kumar, Mukkesh, et al.
Publicado: (2022) -
Determinants of cord blood adipokines and association with neonatal abdominal adipose tissue distribution
por: Tan, Karen, et al.
Publicado: (2021) -
Impact of adopting the 2013 World Health Organization criteria for diagnosis of gestational diabetes in a multi-ethnic Asian cohort: a prospective study
por: Chi, Claudia, et al.
Publicado: (2018) -
Combined analysis of gestational diabetes and maternal weight status from pre-pregnancy through post-delivery in future development of type 2 diabetes
por: Chen, Ling-Wei, et al.
Publicado: (2021) -
Analyses of child cardiometabolic phenotype following assisted reproductive technologies using a pragmatic trial emulation approach
por: Huang, Jonathan Yinhao, et al.
Publicado: (2021)