Cargando…
Deep learning for automatic brain tumour segmentation on MRI: evaluation of recommended reporting criteria via a reproduction and replication study
OBJECTIVES: To determine the reproducibility and replicability of studies that develop and validate segmentation methods for brain tumours on MRI and that follow established reproducibility criteria; and to evaluate whether the reporting guidelines are sufficient. METHODS: Two eligible validation st...
Autores principales: | Gryska, Emilia, Björkman-Burtscher, Isabella, Jakola, Asgeir Store, Dunås, Tora, Schneiderman, Justin, Heckemann, Rolf A |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BMJ Publishing Group
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9297223/ https://www.ncbi.nlm.nih.gov/pubmed/35851016 http://dx.doi.org/10.1136/bmjopen-2021-059000 |
Ejemplares similares
-
Automatic brain lesion segmentation on standard magnetic resonance images: a scoping review
por: Gryska, Emilia, et al.
Publicado: (2021) -
Automatic brain lesion segmentation on standard MRIs of the human head: a scoping review protocol
por: Gryska, Emilia Agnieszka, et al.
Publicado: (2019) -
The clinical significance of the T2-FLAIR mismatch sign in grade II and III gliomas: a population-based study
por: Corell, Alba, et al.
Publicado: (2020) -
Moving from clinician-defined to patient-reported outcome measures for survivors of high-grade glioma
por: Rosenlund, Lena, et al.
Publicado: (2019) -
Seizures in patients with IDH-mutated lower grade gliomas
por: Carstam, Louise, et al.
Publicado: (2022)