Cargando…

Immunohistochemical expression of angiotensin‐converting enzyme 2 in superficial and deep maxillofacial tissues: A cross‐sectional study

BACKGROUND AND AIMS: The involvement of maxillofacial tissues in SARS‐CoV‐2 infections ranges from mild dysgeusia to life‐threatening tissue necrosis, as seen in SARS‐CoV‐2‐associated mucormycosis. Angiotensin‐converting enzyme 2 (ACE2) which functions as a receptor for SARS‐CoV‐2 was reported in th...

Descripción completa

Detalles Bibliográficos
Autores principales: Allawi, Noor, Abdullah, Bashar
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9297373/
https://www.ncbi.nlm.nih.gov/pubmed/35873392
http://dx.doi.org/10.1002/hsr2.737
Descripción
Sumario:BACKGROUND AND AIMS: The involvement of maxillofacial tissues in SARS‐CoV‐2 infections ranges from mild dysgeusia to life‐threatening tissue necrosis, as seen in SARS‐CoV‐2‐associated mucormycosis. Angiotensin‐converting enzyme 2 (ACE2) which functions as a receptor for SARS‐CoV‐2 was reported in the epithelial surfaces of the oral and nasal cavities; however, a complete understanding of the expression patterns in deep oral and maxillofacial tissues is still lacking. METHODS: The immunohistochemical expression of ACE2 was analyzed in 95 specimens from maxillofacial tissues and 10 specimens of pulmonary alveolar tissue using a semiquantitative immunohistochemical scoring procedure, taking into account all superficial and deep maxillofacial tissue cells. We also explored the associations of age, gender, and anatomical site with expression scores. RESULTS: ACE2 was detected in keratinized epithelia (57.34%), non‐keratinized epithelia (46.51%), nasal respiratory epithelial cells (73.35%), pulmonary alveolar cells (82.54%), fibroblasts (63.69%), vascular endothelial cells (58.43%), mucous acinar cells (59.88%), serous acinar cells (79.49%), salivary duct cells (86.26%) skeletal muscle fibers (71.01%), neuron support cells (94.25%), and bone marrow cells (72.65%). Age and gender did not affect the expression levels significantly in epithelial cells (p = 0.76, and p = 0.7 respectively); however, identical cells expressed different protein levels depending on the site from which the specimens were obtained. For example, dorsal tongue epithelia expressed significantly lower ACE2 scores than alveolar epithelia (p < 0.001). A positive correlation was found between ACE2 expression in fibroblasts and epithelial cells (r = 0.378, p = 0.001), and between vascular endothelial and epithelial cells (r = 0.395, p = 0.001). CONCLUSION: ACE2 is expressed by epithelial cells and subepithelial tissues including fibroblasts, vascular endothelia, skeletal muscles, peripheral nerves, and bone marrow. No correlation was detected between ACE2 expression and patient age or sex while the epithelial expression scores were correlated with stromal scores.