Cargando…
Analysis of repeat elements in the Pristionchus pacificus genome reveals an ancient invasion by horizontally transferred transposons
BACKGROUND: Repetitive sequences and mobile elements make up considerable fractions of individual genomes. While transposition events can be detrimental for organismal fitness, repetitive sequences form an enormous reservoir for molecular innovation. In this study, we aim to add repetitive elements...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9297572/ https://www.ncbi.nlm.nih.gov/pubmed/35854227 http://dx.doi.org/10.1186/s12864-022-08731-1 |
Sumario: | BACKGROUND: Repetitive sequences and mobile elements make up considerable fractions of individual genomes. While transposition events can be detrimental for organismal fitness, repetitive sequences form an enormous reservoir for molecular innovation. In this study, we aim to add repetitive elements to the annotation of the Pristionchus pacificus genome and assess their impact on novel gene formation. RESULTS: Different computational approaches define up to 24% of the P. pacificus genome as repetitive sequences. While retroelements are more frequently found at the chromosome arms, DNA transposons are distributed more evenly. We found multiple DNA transposons, as well as LTR and LINE elements with abundant evidence of expression as single-exon transcripts. When testing whether transposons disproportionately contribute towards new gene formation, we found that roughly 10–20% of genes across all age classes overlap transposable elements with the strongest trend being an enrichment of low complexity regions among the oldest genes. Finally, we characterized a horizontal gene transfer of Zisupton elements into diplogastrid nematodes. These DNA transposons invaded nematodes from eukaryotic donor species and experienced a recent burst of activity in the P. pacificus lineage. CONCLUSIONS: The comprehensive annotation of repetitive elements in the P. pacificus genome builds a resource for future functional genomic analyses as well as for more detailed investigations of molecular innovations. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s12864-022-08731-1. |
---|