Cargando…

Improving the computation efficiency of polygenic risk score modeling: faster in Julia

To enable large-scale application of polygenic risk scores (PRSs) in a computationally efficient manner, we translate a widely used PRS construction method, PRS–continuous shrinkage, to the Julia programming language, PRS.jl. On nine different traits with varying genetic architectures, we demonstrat...

Descripción completa

Detalles Bibliográficos
Autores principales: Faucon, Annika, Samaroo, Julian, Ge, Tian, Davis, Lea K, Cox, Nancy J, Tao, Ran, Shuey, Megan M
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Life Science Alliance LLC 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9297586/
https://www.ncbi.nlm.nih.gov/pubmed/35851544
http://dx.doi.org/10.26508/lsa.202201382
Descripción
Sumario:To enable large-scale application of polygenic risk scores (PRSs) in a computationally efficient manner, we translate a widely used PRS construction method, PRS–continuous shrinkage, to the Julia programming language, PRS.jl. On nine different traits with varying genetic architectures, we demonstrate that PRS.jl maintains accuracy of prediction while decreasing the average runtime by 5.5×. Additional programmatic modifications improve usability and robustness. This freely available software substantially improves work flow and democratizes usage of PRSs by lowering the computational burden of the PRS–continuous shrinkage method.