Cargando…
Humulus japonicus attenuates LPS-and scopolamine-induced cognitive impairment in mice
BACKGROUND: Neuroinflammation plays an important role in cognitive decline and memory impairment in neurodegenerative disorders. Previously, we demonstrated that Humulus japonicus (HJ) has anti-inflammatory effects in rodent models of Alzheimer’s disease and Parkinson’s disease. The present study ai...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9297604/ https://www.ncbi.nlm.nih.gov/pubmed/35854340 http://dx.doi.org/10.1186/s42826-022-00134-3 |
Sumario: | BACKGROUND: Neuroinflammation plays an important role in cognitive decline and memory impairment in neurodegenerative disorders. Previously, we demonstrated that Humulus japonicus (HJ) has anti-inflammatory effects in rodent models of Alzheimer’s disease and Parkinson’s disease. The present study aimed to examine the protective potential of HJ extracts against lipopolysaccharide (LPS)-induced cognitive impairment and scopolamine-induced amnesia in mouse models. Cognitive improvement of mice was investigated by novel object recognition test. For analyzing effects on neuroinflammation, immunohistochemistry and quantitative real-time polymerase chain reaction (qRT-PCR) assays were performed. RESULTS: We found that the oral administration of HJ significantly improved cognitive dysfunction induced by LPS in a novel object recognition test. The LPS-induced activation of microglia was notably decreased by HJ treatment in the cortex and hippocampus. HJ administration with LPS also significantly increased the mRNA expression of interleukin (IL)-10 and decreased the mRNA expression of IL-12 in the parietal cortex of mice. The increased expression of LPS-induced complement C1q B chain (C1bq) and triggering receptor expressed on myeloid cells 2 (Trem2) genes was significantly suppressed by HJ treatment. In addition, HJ administration significantly improved novel object recognition in a scopolamine-induced amnesia mouse model. CONCLUSIONS: These findings revealed that HJ has a beneficial effect on cognitive impairment and neuroinflammation induced by systemic inflammation and on amnesia induced by scopolamine in mice. |
---|