Cargando…

A focus on simulation and machine learning as complementary tools for chemical space navigation

Computer-aided molecular design benefits from the integration of two complementary approaches: machine learning and first-principles simulation. Mohr et al. (B. Mohr, K. Shmilovich, I. S. Kleinwächter, D. Schneider, A. L. Ferguson and T. Bereau, Chem. Sci., 2022, 13, 4498–4511, https://pubs.rsc.org/...

Descripción completa

Detalles Bibliográficos
Autores principales: Aldeghi, Matteo, Coley, Connor W.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The Royal Society of Chemistry 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9297700/
https://www.ncbi.nlm.nih.gov/pubmed/35919730
http://dx.doi.org/10.1039/d2sc90130g
Descripción
Sumario:Computer-aided molecular design benefits from the integration of two complementary approaches: machine learning and first-principles simulation. Mohr et al. (B. Mohr, K. Shmilovich, I. S. Kleinwächter, D. Schneider, A. L. Ferguson and T. Bereau, Chem. Sci., 2022, 13, 4498–4511, https://pubs.rsc.org/en/content/articlelanding/2022/sc/d2sc00116k) demonstrated the discovery of a cardiolipin-selective molecule via the combination of coarse-grained molecular dynamics, alchemical free energy calculations, Bayesian optimization and interpretable regression to reveal design principles.