Cargando…
A focus on simulation and machine learning as complementary tools for chemical space navigation
Computer-aided molecular design benefits from the integration of two complementary approaches: machine learning and first-principles simulation. Mohr et al. (B. Mohr, K. Shmilovich, I. S. Kleinwächter, D. Schneider, A. L. Ferguson and T. Bereau, Chem. Sci., 2022, 13, 4498–4511, https://pubs.rsc.org/...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Royal Society of Chemistry
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9297700/ https://www.ncbi.nlm.nih.gov/pubmed/35919730 http://dx.doi.org/10.1039/d2sc90130g |
Sumario: | Computer-aided molecular design benefits from the integration of two complementary approaches: machine learning and first-principles simulation. Mohr et al. (B. Mohr, K. Shmilovich, I. S. Kleinwächter, D. Schneider, A. L. Ferguson and T. Bereau, Chem. Sci., 2022, 13, 4498–4511, https://pubs.rsc.org/en/content/articlelanding/2022/sc/d2sc00116k) demonstrated the discovery of a cardiolipin-selective molecule via the combination of coarse-grained molecular dynamics, alchemical free energy calculations, Bayesian optimization and interpretable regression to reveal design principles. |
---|