Cargando…
Co-delivery of carbonic anhydrase IX inhibitor and doxorubicin as a promising approach to address hypoxia-induced chemoresistance
Hypoxia, an oxygen-deprived condition of the tumor, is one of the major reasons for resistance to chemotherapy. Carbonic anhydrases are generally involved in pH homeostasis in normal conditions, but in solid tumors having a strong relation with hypoxia, the carbonic anhydrase IX (CA-IX) enzyme is ov...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Taylor & Francis
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9297722/ https://www.ncbi.nlm.nih.gov/pubmed/35848469 http://dx.doi.org/10.1080/10717544.2022.2092234 |
_version_ | 1784750534386778112 |
---|---|
author | Amin, Muhammad Umair Ali, Sajid Ali, Muhammad Yasir Fuhrmann, Dominik C. Tariq, Imran Seitz, Benjamin S. Preis, Eduard Brüßler, Jana Brüne, Bernhard Bakowsky, Udo |
author_facet | Amin, Muhammad Umair Ali, Sajid Ali, Muhammad Yasir Fuhrmann, Dominik C. Tariq, Imran Seitz, Benjamin S. Preis, Eduard Brüßler, Jana Brüne, Bernhard Bakowsky, Udo |
author_sort | Amin, Muhammad Umair |
collection | PubMed |
description | Hypoxia, an oxygen-deprived condition of the tumor, is one of the major reasons for resistance to chemotherapy. Carbonic anhydrases are generally involved in pH homeostasis in normal conditions, but in solid tumors having a strong relation with hypoxia, the carbonic anhydrase IX (CA-IX) enzyme is overexpressed and results in an extracellular acidic environment. For most weakly basic anticancer drugs, including doxorubicin (Dox), the ionization in an acidic environment limits their cellular uptake, and consequently, the tumor exposure to the drug at sub-therapeutic concentration comes out as chemoresistance. Herein, a combined drug delivery system of liposomes and mesoporous silica nanoparticles (MSNPs) was developed for the co-delivery of the CA-IX enzyme inhibitor and Dox in hypoxic condition. The unique structure of MSNPs with higher surface area was utilized for higher drug loading and sustained release of Dox. Additionally, the biocompatible nature of liposomal coating as a second loading site for the CA-IX enzyme inhibitor has provided gatekeeping effects at pore opening to avoid premature drug release. Lipid coated MSNPs as a co-delivery system for Dox and the CA-IX inhibitor have synergistic cytotoxic effects against MDA-MB 231 breast cancer cells in hypoxic conditions. These findings assure the potential of this drug delivery system to overcome hypoxia-related chemoresistance. |
format | Online Article Text |
id | pubmed-9297722 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Taylor & Francis |
record_format | MEDLINE/PubMed |
spelling | pubmed-92977222022-07-21 Co-delivery of carbonic anhydrase IX inhibitor and doxorubicin as a promising approach to address hypoxia-induced chemoresistance Amin, Muhammad Umair Ali, Sajid Ali, Muhammad Yasir Fuhrmann, Dominik C. Tariq, Imran Seitz, Benjamin S. Preis, Eduard Brüßler, Jana Brüne, Bernhard Bakowsky, Udo Drug Deliv Research Article Hypoxia, an oxygen-deprived condition of the tumor, is one of the major reasons for resistance to chemotherapy. Carbonic anhydrases are generally involved in pH homeostasis in normal conditions, but in solid tumors having a strong relation with hypoxia, the carbonic anhydrase IX (CA-IX) enzyme is overexpressed and results in an extracellular acidic environment. For most weakly basic anticancer drugs, including doxorubicin (Dox), the ionization in an acidic environment limits their cellular uptake, and consequently, the tumor exposure to the drug at sub-therapeutic concentration comes out as chemoresistance. Herein, a combined drug delivery system of liposomes and mesoporous silica nanoparticles (MSNPs) was developed for the co-delivery of the CA-IX enzyme inhibitor and Dox in hypoxic condition. The unique structure of MSNPs with higher surface area was utilized for higher drug loading and sustained release of Dox. Additionally, the biocompatible nature of liposomal coating as a second loading site for the CA-IX enzyme inhibitor has provided gatekeeping effects at pore opening to avoid premature drug release. Lipid coated MSNPs as a co-delivery system for Dox and the CA-IX inhibitor have synergistic cytotoxic effects against MDA-MB 231 breast cancer cells in hypoxic conditions. These findings assure the potential of this drug delivery system to overcome hypoxia-related chemoresistance. Taylor & Francis 2022-07-17 /pmc/articles/PMC9297722/ /pubmed/35848469 http://dx.doi.org/10.1080/10717544.2022.2092234 Text en © 2022 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group. https://creativecommons.org/licenses/by/4.0/This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Article Amin, Muhammad Umair Ali, Sajid Ali, Muhammad Yasir Fuhrmann, Dominik C. Tariq, Imran Seitz, Benjamin S. Preis, Eduard Brüßler, Jana Brüne, Bernhard Bakowsky, Udo Co-delivery of carbonic anhydrase IX inhibitor and doxorubicin as a promising approach to address hypoxia-induced chemoresistance |
title | Co-delivery of carbonic anhydrase IX inhibitor and doxorubicin as a promising approach to address hypoxia-induced chemoresistance |
title_full | Co-delivery of carbonic anhydrase IX inhibitor and doxorubicin as a promising approach to address hypoxia-induced chemoresistance |
title_fullStr | Co-delivery of carbonic anhydrase IX inhibitor and doxorubicin as a promising approach to address hypoxia-induced chemoresistance |
title_full_unstemmed | Co-delivery of carbonic anhydrase IX inhibitor and doxorubicin as a promising approach to address hypoxia-induced chemoresistance |
title_short | Co-delivery of carbonic anhydrase IX inhibitor and doxorubicin as a promising approach to address hypoxia-induced chemoresistance |
title_sort | co-delivery of carbonic anhydrase ix inhibitor and doxorubicin as a promising approach to address hypoxia-induced chemoresistance |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9297722/ https://www.ncbi.nlm.nih.gov/pubmed/35848469 http://dx.doi.org/10.1080/10717544.2022.2092234 |
work_keys_str_mv | AT aminmuhammadumair codeliveryofcarbonicanhydraseixinhibitoranddoxorubicinasapromisingapproachtoaddresshypoxiainducedchemoresistance AT alisajid codeliveryofcarbonicanhydraseixinhibitoranddoxorubicinasapromisingapproachtoaddresshypoxiainducedchemoresistance AT alimuhammadyasir codeliveryofcarbonicanhydraseixinhibitoranddoxorubicinasapromisingapproachtoaddresshypoxiainducedchemoresistance AT fuhrmanndominikc codeliveryofcarbonicanhydraseixinhibitoranddoxorubicinasapromisingapproachtoaddresshypoxiainducedchemoresistance AT tariqimran codeliveryofcarbonicanhydraseixinhibitoranddoxorubicinasapromisingapproachtoaddresshypoxiainducedchemoresistance AT seitzbenjamins codeliveryofcarbonicanhydraseixinhibitoranddoxorubicinasapromisingapproachtoaddresshypoxiainducedchemoresistance AT preiseduard codeliveryofcarbonicanhydraseixinhibitoranddoxorubicinasapromisingapproachtoaddresshypoxiainducedchemoresistance AT brußlerjana codeliveryofcarbonicanhydraseixinhibitoranddoxorubicinasapromisingapproachtoaddresshypoxiainducedchemoresistance AT brunebernhard codeliveryofcarbonicanhydraseixinhibitoranddoxorubicinasapromisingapproachtoaddresshypoxiainducedchemoresistance AT bakowskyudo codeliveryofcarbonicanhydraseixinhibitoranddoxorubicinasapromisingapproachtoaddresshypoxiainducedchemoresistance |