Cargando…

Tanshinone IIA enhances the ovarian reserve and attenuates ovarian oxidative stress in aged mice

BACKGROUND: Tanshinone IIA (TSA), a major lipophilic component extracted from the roots of Salvia miltiorrhiza Bunge, has been widely used in China for its various biological activities. However, its effect on ovarian reserve in aged mice was not studied elsewhere. OBJECTIVES: This study aimed to ex...

Descripción completa

Detalles Bibliográficos
Autores principales: Bai, Lin, He, Guozhen, Gao, Chenghai, Yang, Hua, Li, Mingxing, Huang, Yulin, Moussa, Mahmoud, Xu, Changlong
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9297741/
https://www.ncbi.nlm.nih.gov/pubmed/35451235
http://dx.doi.org/10.1002/vms3.811
_version_ 1784750538152214528
author Bai, Lin
He, Guozhen
Gao, Chenghai
Yang, Hua
Li, Mingxing
Huang, Yulin
Moussa, Mahmoud
Xu, Changlong
author_facet Bai, Lin
He, Guozhen
Gao, Chenghai
Yang, Hua
Li, Mingxing
Huang, Yulin
Moussa, Mahmoud
Xu, Changlong
author_sort Bai, Lin
collection PubMed
description BACKGROUND: Tanshinone IIA (TSA), a major lipophilic component extracted from the roots of Salvia miltiorrhiza Bunge, has been widely used in China for its various biological activities. However, its effect on ovarian reserve in aged mice was not studied elsewhere. OBJECTIVES: This study aimed to explore the effect of TSA on the ovarian reserve of aged mice as well as young mice. Forty weeks old mice (N = 40) were considered as aged group compared to 4 weeks old mice (N = 40), and these groups were subdivided into four subgroups (N = 10) to receive different doses of TSA (0, 10, 20, and 40 μg/g/day). METHODS: The effect of TSA was evaluated by counting follicular number by histological examination. Basal serum levels of FSH, LH, E2, and anti‐Mullerian hormone (AMH) were measured by ELISA. Moreover, the expression levels of antioxidant genes (CAT, Nrf2, GPX1), gap junction (Cx37), ERK1/2, and Smad5 family gene were examined at both mRNA (qPCR) and protein levels (western blot). RESULTS: Follicular number, level of AMH and E2, and the expression of CAT, Nrf2, and GPX1 genes increased significantly (p < 0.05) in aged mice administrated with medium (20 μg/g/day) and high (40 μg/g/day) doses of TSA, whereas FSH and LH levels were significantly low compared to low dose (10 μg/g/day) and control (0 μg/g/day) aged subgroups. However, we did not observe any effect of all doses of TSA on young mice. CONCLUSIONS: Administration of TSA with medium and high doses up‐regulates the expression of antioxidative genes, reduces the oxidative injury, increases levels of AMH, and E2 levels that are relatively comparable to those in young mice, and consequently results in a healthy oocyte development.
format Online
Article
Text
id pubmed-9297741
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher John Wiley and Sons Inc.
record_format MEDLINE/PubMed
spelling pubmed-92977412022-07-22 Tanshinone IIA enhances the ovarian reserve and attenuates ovarian oxidative stress in aged mice Bai, Lin He, Guozhen Gao, Chenghai Yang, Hua Li, Mingxing Huang, Yulin Moussa, Mahmoud Xu, Changlong Vet Med Sci RODENTS BACKGROUND: Tanshinone IIA (TSA), a major lipophilic component extracted from the roots of Salvia miltiorrhiza Bunge, has been widely used in China for its various biological activities. However, its effect on ovarian reserve in aged mice was not studied elsewhere. OBJECTIVES: This study aimed to explore the effect of TSA on the ovarian reserve of aged mice as well as young mice. Forty weeks old mice (N = 40) were considered as aged group compared to 4 weeks old mice (N = 40), and these groups were subdivided into four subgroups (N = 10) to receive different doses of TSA (0, 10, 20, and 40 μg/g/day). METHODS: The effect of TSA was evaluated by counting follicular number by histological examination. Basal serum levels of FSH, LH, E2, and anti‐Mullerian hormone (AMH) were measured by ELISA. Moreover, the expression levels of antioxidant genes (CAT, Nrf2, GPX1), gap junction (Cx37), ERK1/2, and Smad5 family gene were examined at both mRNA (qPCR) and protein levels (western blot). RESULTS: Follicular number, level of AMH and E2, and the expression of CAT, Nrf2, and GPX1 genes increased significantly (p < 0.05) in aged mice administrated with medium (20 μg/g/day) and high (40 μg/g/day) doses of TSA, whereas FSH and LH levels were significantly low compared to low dose (10 μg/g/day) and control (0 μg/g/day) aged subgroups. However, we did not observe any effect of all doses of TSA on young mice. CONCLUSIONS: Administration of TSA with medium and high doses up‐regulates the expression of antioxidative genes, reduces the oxidative injury, increases levels of AMH, and E2 levels that are relatively comparable to those in young mice, and consequently results in a healthy oocyte development. John Wiley and Sons Inc. 2022-04-21 /pmc/articles/PMC9297741/ /pubmed/35451235 http://dx.doi.org/10.1002/vms3.811 Text en © 2022 The Authors. Veterinary Medicine and Science published by John Wiley & Sons Ltd. https://creativecommons.org/licenses/by/4.0/This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
spellingShingle RODENTS
Bai, Lin
He, Guozhen
Gao, Chenghai
Yang, Hua
Li, Mingxing
Huang, Yulin
Moussa, Mahmoud
Xu, Changlong
Tanshinone IIA enhances the ovarian reserve and attenuates ovarian oxidative stress in aged mice
title Tanshinone IIA enhances the ovarian reserve and attenuates ovarian oxidative stress in aged mice
title_full Tanshinone IIA enhances the ovarian reserve and attenuates ovarian oxidative stress in aged mice
title_fullStr Tanshinone IIA enhances the ovarian reserve and attenuates ovarian oxidative stress in aged mice
title_full_unstemmed Tanshinone IIA enhances the ovarian reserve and attenuates ovarian oxidative stress in aged mice
title_short Tanshinone IIA enhances the ovarian reserve and attenuates ovarian oxidative stress in aged mice
title_sort tanshinone iia enhances the ovarian reserve and attenuates ovarian oxidative stress in aged mice
topic RODENTS
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9297741/
https://www.ncbi.nlm.nih.gov/pubmed/35451235
http://dx.doi.org/10.1002/vms3.811
work_keys_str_mv AT bailin tanshinoneiiaenhancestheovarianreserveandattenuatesovarianoxidativestressinagedmice
AT heguozhen tanshinoneiiaenhancestheovarianreserveandattenuatesovarianoxidativestressinagedmice
AT gaochenghai tanshinoneiiaenhancestheovarianreserveandattenuatesovarianoxidativestressinagedmice
AT yanghua tanshinoneiiaenhancestheovarianreserveandattenuatesovarianoxidativestressinagedmice
AT limingxing tanshinoneiiaenhancestheovarianreserveandattenuatesovarianoxidativestressinagedmice
AT huangyulin tanshinoneiiaenhancestheovarianreserveandattenuatesovarianoxidativestressinagedmice
AT moussamahmoud tanshinoneiiaenhancestheovarianreserveandattenuatesovarianoxidativestressinagedmice
AT xuchanglong tanshinoneiiaenhancestheovarianreserveandattenuatesovarianoxidativestressinagedmice