Cargando…
Workflow for automatic renal perfusion quantification using ASL‐MRI and machine learning
PURPOSE: Clinical applicability of renal arterial spin labeling (ASL) MRI is hampered because of time consuming and observer dependent post‐processing, including manual segmentation of the cortex to obtain cortical renal blood flow (RBF). Machine learning has proven its value in medical image segmen...
Autores principales: | Bones, Isabell K., Bos, Clemens, Moonen, Chrit, Hendrikse, Jeroen, van Stralen, Marijn |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9297892/ https://www.ncbi.nlm.nih.gov/pubmed/34672029 http://dx.doi.org/10.1002/mrm.29016 |
Ejemplares similares
-
Influence of labeling parameters and respiratory motion on velocity‐selective arterial spin labeling for renal perfusion imaging
por: Bones, Isabell K., et al.
Publicado: (2020) -
Enabling free‐breathing background suppressed renal pCASL using fat imaging and retrospective motion correction
por: Bones, Isabell K., et al.
Publicado: (2019) -
Exploring label dynamics of velocity‐selective arterial spin labeling in the kidney
por: Bones, Isabell K., et al.
Publicado: (2021) -
Implementation and validation of ASL perfusion measurements for population imaging
por: Warnert, Esther A. H., et al.
Publicado: (2020) -
Interleaved water and fat MR thermometry for monitoring high intensity focused ultrasound ablation of bone lesions
por: Lena, Beatrice, et al.
Publicado: (2021)