Cargando…
Mitoquinone does not improve sperm cryo‐resistance in bulls
Oxidative stress is associated with impaired post‐thaw sperm quality. As mitochondria are the main source of reactive oxygen species (ROS) in sperm, the goal of this study was to evaluate effects of the mitochondria‐targeting antioxidant Mitoquinone (MitoQ) during cryopreservation of bull sperm. Sem...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9298030/ https://www.ncbi.nlm.nih.gov/pubmed/34626138 http://dx.doi.org/10.1111/rda.14024 |
Sumario: | Oxidative stress is associated with impaired post‐thaw sperm quality. As mitochondria are the main source of reactive oxygen species (ROS) in sperm, the goal of this study was to evaluate effects of the mitochondria‐targeting antioxidant Mitoquinone (MitoQ) during cryopreservation of bull sperm. Semen was collected from 11 Simmental bulls (two ejaculates per bull) and diluted in Triladyl(®) supplemented with various concentrations of MitoQ (0, 0.2, 2, and 20 nM) to a final concentration of 65 × 10(6) sperm/ml. After thawing (0 and 3 hr), we assessed the following sperm traits: sperm motility by computer‐assisted sperm analysis (CASA), DNA fragmentation index by SCSA(®) and plasma and acrosome membrane integrity, intracellular calcium concentration, esterase activity, mitochondrial membrane potential and synthesis of ROS using two multicolour flow cytometric assays. After 3 hr of incubation, 20 nM MitoQ increased (p < .05) sperm ROS synthesis compared to Control, whereas none of the other quality parameters were altered (p > .05). Therefore, we concluded that addition of MitoQ to semen extender before cryopreservation of bull sperm was unable to improve post‐thaw sperm quality. Furthermore, 20 nM of MitoQ increased frozen‐thawed sperm ROS synthesis, without apparent negative effects on the evaluated sperm traits. |
---|