Cargando…
Automated segmentation of lung, liver, and liver tumors from Tc‐99m MAA SPECT/CT images for Y‐90 radioembolization using convolutional neural networks
PURPOSE: (90)Y selective internal radiation therapy (SIRT) has become a safe and effective treatment option for liver cancer. However, segmentation of target and organ‐at‐risks is labor‐intensive and time‐consuming in (90)Y SIRT planning. In this study, we developed a convolutional neural network (C...
Autores principales: | Chaichana, Anucha, Frey, Eric C., Teyateeti, Ajalaya, Rhoongsittichai, Kijja, Tocharoenchai, Chiraporn, Pusuwan, Pawana, Jangpatarapongsa, Kulachart |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9298038/ https://www.ncbi.nlm.nih.gov/pubmed/34657293 http://dx.doi.org/10.1002/mp.15303 |
Ejemplares similares
-
Feasibility of imaging (90)Y microspheres at diagnostic activity levels for hepatic radioembolization treatment planning
por: Kunnen, Britt, et al.
Publicado: (2020) -
Technical Note: On the spatial correlation between robust CT‐ventilation methods and SPECT ventilation
por: Castillo, Edward, et al.
Publicado: (2020) -
Clinical impact of (99m)Tc-MAA SPECT/CT-based dosimetry in the radioembolization of liver malignancies with (90)Y-loaded microspheres
por: Garin, Etienne, et al.
Publicado: (2015) -
MRI texture features as biomarkers to predict MGMT methylation status in glioblastomas
por: Korfiatis, Panagiotis, et al.
Publicado: (2016) -
Semiautomated segmentation of head and neck cancers in 18F-FDG PET scans: A just-enough-interaction approach
por: Beichel, Reinhard R., et al.
Publicado: (2016)