Cargando…
Root responses to aluminium and iron stresses require the SIZ1 SUMO ligase to modulate the STOP1 transcription factor
STOP1, an Arabidopsis transcription factor favouring root growth tolerance against Al toxicity, acts in the response to iron under low Pi (−Pi). Previous studies have shown that Al and Fe regulate the stability and accumulation of STOP1 in roots, and that the STOP1 protein is sumoylated by an unknow...
Autores principales: | , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9298234/ https://www.ncbi.nlm.nih.gov/pubmed/34612534 http://dx.doi.org/10.1111/tpj.15525 |
_version_ | 1784750657499037696 |
---|---|
author | Mercier, Caroline Roux, Brice Have, Marien Le Poder, Léa Duong, Nathalie David, Pascale Leonhardt, Nathalie Blanchard, Laurence Naumann, Christin Abel, Steffen Cuyas, Laura Pluchon, Sylvain Nussaume, Laurent Desnos, Thierry |
author_facet | Mercier, Caroline Roux, Brice Have, Marien Le Poder, Léa Duong, Nathalie David, Pascale Leonhardt, Nathalie Blanchard, Laurence Naumann, Christin Abel, Steffen Cuyas, Laura Pluchon, Sylvain Nussaume, Laurent Desnos, Thierry |
author_sort | Mercier, Caroline |
collection | PubMed |
description | STOP1, an Arabidopsis transcription factor favouring root growth tolerance against Al toxicity, acts in the response to iron under low Pi (−Pi). Previous studies have shown that Al and Fe regulate the stability and accumulation of STOP1 in roots, and that the STOP1 protein is sumoylated by an unknown E3 ligase. Here, using a forward genetics suppressor screen, we identified the E3 SUMO (small ubiquitin‐like modifier) ligase SIZ1 as a modulator of STOP1 signalling. Mutations in SIZ1 increase the expression of ALMT1 (a direct target of STOP1) and root growth responses to Al and Fe stress in a STOP1‐dependent manner. Moreover, loss‐of‐function mutations in SIZ1 enhance the abundance of STOP1 in the root tip. However, no sumoylated STOP1 protein was detected by Western blot analysis in our sumoylation assay in Escherichia coli, suggesting the presence of a more sophisticated mechanism. We conclude that the sumo ligase SIZ1 negatively regulates STOP1 signalling, at least in part by modulating STOP1 protein in the root tip. Our results will allow a better understanding of this signalling pathway. |
format | Online Article Text |
id | pubmed-9298234 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | John Wiley and Sons Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-92982342022-07-21 Root responses to aluminium and iron stresses require the SIZ1 SUMO ligase to modulate the STOP1 transcription factor Mercier, Caroline Roux, Brice Have, Marien Le Poder, Léa Duong, Nathalie David, Pascale Leonhardt, Nathalie Blanchard, Laurence Naumann, Christin Abel, Steffen Cuyas, Laura Pluchon, Sylvain Nussaume, Laurent Desnos, Thierry Plant J Original Articles STOP1, an Arabidopsis transcription factor favouring root growth tolerance against Al toxicity, acts in the response to iron under low Pi (−Pi). Previous studies have shown that Al and Fe regulate the stability and accumulation of STOP1 in roots, and that the STOP1 protein is sumoylated by an unknown E3 ligase. Here, using a forward genetics suppressor screen, we identified the E3 SUMO (small ubiquitin‐like modifier) ligase SIZ1 as a modulator of STOP1 signalling. Mutations in SIZ1 increase the expression of ALMT1 (a direct target of STOP1) and root growth responses to Al and Fe stress in a STOP1‐dependent manner. Moreover, loss‐of‐function mutations in SIZ1 enhance the abundance of STOP1 in the root tip. However, no sumoylated STOP1 protein was detected by Western blot analysis in our sumoylation assay in Escherichia coli, suggesting the presence of a more sophisticated mechanism. We conclude that the sumo ligase SIZ1 negatively regulates STOP1 signalling, at least in part by modulating STOP1 protein in the root tip. Our results will allow a better understanding of this signalling pathway. John Wiley and Sons Inc. 2021-10-21 2021-12 /pmc/articles/PMC9298234/ /pubmed/34612534 http://dx.doi.org/10.1111/tpj.15525 Text en © 2021 The Authors. The Plant Journal published by Society for Experimental Biology and John Wiley & Sons Ltd. https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the terms of the http://creativecommons.org/licenses/by-nc-nd/4.0/ (https://creativecommons.org/licenses/by-nc-nd/4.0/) License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non‐commercial and no modifications or adaptations are made. |
spellingShingle | Original Articles Mercier, Caroline Roux, Brice Have, Marien Le Poder, Léa Duong, Nathalie David, Pascale Leonhardt, Nathalie Blanchard, Laurence Naumann, Christin Abel, Steffen Cuyas, Laura Pluchon, Sylvain Nussaume, Laurent Desnos, Thierry Root responses to aluminium and iron stresses require the SIZ1 SUMO ligase to modulate the STOP1 transcription factor |
title | Root responses to aluminium and iron stresses require the SIZ1 SUMO ligase to modulate the STOP1 transcription factor |
title_full | Root responses to aluminium and iron stresses require the SIZ1 SUMO ligase to modulate the STOP1 transcription factor |
title_fullStr | Root responses to aluminium and iron stresses require the SIZ1 SUMO ligase to modulate the STOP1 transcription factor |
title_full_unstemmed | Root responses to aluminium and iron stresses require the SIZ1 SUMO ligase to modulate the STOP1 transcription factor |
title_short | Root responses to aluminium and iron stresses require the SIZ1 SUMO ligase to modulate the STOP1 transcription factor |
title_sort | root responses to aluminium and iron stresses require the siz1 sumo ligase to modulate the stop1 transcription factor |
topic | Original Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9298234/ https://www.ncbi.nlm.nih.gov/pubmed/34612534 http://dx.doi.org/10.1111/tpj.15525 |
work_keys_str_mv | AT merciercaroline rootresponsestoaluminiumandironstressesrequirethesiz1sumoligasetomodulatethestop1transcriptionfactor AT rouxbrice rootresponsestoaluminiumandironstressesrequirethesiz1sumoligasetomodulatethestop1transcriptionfactor AT havemarien rootresponsestoaluminiumandironstressesrequirethesiz1sumoligasetomodulatethestop1transcriptionfactor AT lepoderlea rootresponsestoaluminiumandironstressesrequirethesiz1sumoligasetomodulatethestop1transcriptionfactor AT duongnathalie rootresponsestoaluminiumandironstressesrequirethesiz1sumoligasetomodulatethestop1transcriptionfactor AT davidpascale rootresponsestoaluminiumandironstressesrequirethesiz1sumoligasetomodulatethestop1transcriptionfactor AT leonhardtnathalie rootresponsestoaluminiumandironstressesrequirethesiz1sumoligasetomodulatethestop1transcriptionfactor AT blanchardlaurence rootresponsestoaluminiumandironstressesrequirethesiz1sumoligasetomodulatethestop1transcriptionfactor AT naumannchristin rootresponsestoaluminiumandironstressesrequirethesiz1sumoligasetomodulatethestop1transcriptionfactor AT abelsteffen rootresponsestoaluminiumandironstressesrequirethesiz1sumoligasetomodulatethestop1transcriptionfactor AT cuyaslaura rootresponsestoaluminiumandironstressesrequirethesiz1sumoligasetomodulatethestop1transcriptionfactor AT pluchonsylvain rootresponsestoaluminiumandironstressesrequirethesiz1sumoligasetomodulatethestop1transcriptionfactor AT nussaumelaurent rootresponsestoaluminiumandironstressesrequirethesiz1sumoligasetomodulatethestop1transcriptionfactor AT desnosthierry rootresponsestoaluminiumandironstressesrequirethesiz1sumoligasetomodulatethestop1transcriptionfactor |