Cargando…

Assessment of fully automatic segmentation of pulmonary artery and aorta on noncontrast CT with optimal surface graph cuts

PURPOSE: Accurate segmentation of the pulmonary arteries and aorta is important due to the association of the diameter and the shape of these vessels with several cardiovascular diseases and with the risk of exacerbations and death in patients with chronic obstructive pulmonary disease. We propose a...

Descripción completa

Detalles Bibliográficos
Autores principales: Sedghi Gamechi, Zahra, Arias‐Lorza, Andres M., Saghir, Zaigham, Bos, Daniel, de Bruijne, Marleen
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9298252/
https://www.ncbi.nlm.nih.gov/pubmed/34653274
http://dx.doi.org/10.1002/mp.15289
_version_ 1784750661917736960
author Sedghi Gamechi, Zahra
Arias‐Lorza, Andres M.
Saghir, Zaigham
Bos, Daniel
de Bruijne, Marleen
author_facet Sedghi Gamechi, Zahra
Arias‐Lorza, Andres M.
Saghir, Zaigham
Bos, Daniel
de Bruijne, Marleen
author_sort Sedghi Gamechi, Zahra
collection PubMed
description PURPOSE: Accurate segmentation of the pulmonary arteries and aorta is important due to the association of the diameter and the shape of these vessels with several cardiovascular diseases and with the risk of exacerbations and death in patients with chronic obstructive pulmonary disease. We propose a fully automatic method based on an optimal surface graph‐cut algorithm to quantify the full 3D shape and the diameters of the pulmonary arteries and aorta in noncontrast computed tomography (CT) scans. METHODS: The proposed algorithm first extracts seed points in the right and left pulmonary arteries, the pulmonary trunk, and the ascending and descending aorta by using multi‐atlas registration. Subsequently, the centerlines of the pulmonary arteries and aorta are extracted by a minimum cost path tracking between the extracted seed points, with a cost based on a combination of lumen intensity similarity and multiscale medialness in three planes. The centerlines are refined by applying the path tracking algorithm to curved multiplanar reformatted scans and are then smoothed and dilated nonuniformly according to the extracted local vessel radius from the medialness filter. The resulting coarse estimates of the vessels are used as initialization for a graph‐cut segmentation. Once the vessels are segmented, the diameters of the pulmonary artery (PA) and the ascending aorta (AA) and the [Formula: see text] ratio are automatically calculated both in a single axial slice and in a 10 mm volume around the automatically extracted PA bifurcation level. The method is evaluated on noncontrast CT scans from the Danish Lung Cancer Screening Trial (DLCST). Segmentation accuracy is determined by comparing with manual annotations on 25 CT scans. Intraclass correlation (ICC) between manual and automatic diameters, both measured in axial slices at the PA bifurcation level, is computed on an additional 200 CT scans. Repeatability of the automated 3D volumetric diameter and [Formula: see text] ratio calculations (perpendicular to the vessel axis) are evaluated on 118 scan–rescan pairs with an average in‐between time of 3 months. RESULTS: We obtained a Dice segmentation overlap of 0.94 ± 0.02 for pulmonary arteries and 0.96 ± 0.01 for the aorta, with a mean surface distance of 0.62 ± 0.33 mm and 0.43 ± 0.07 mm, respectively. ICC between manual and automatic in‐slice diameter measures was 0.92 for PA, 0.97 for AA, and 0.90 for the [Formula: see text] ratio, and for automatic diameters in 3D volumes around the PA bifurcation level between scan and rescan was 0.89, 0.95, and 0.86, respectively. CONCLUSION: The proposed automatic segmentation method can reliably extract diameters of the large arteries in non‐ECG‐gated noncontrast CT scans such as are acquired in lung cancer screening.
format Online
Article
Text
id pubmed-9298252
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher John Wiley and Sons Inc.
record_format MEDLINE/PubMed
spelling pubmed-92982522022-07-21 Assessment of fully automatic segmentation of pulmonary artery and aorta on noncontrast CT with optimal surface graph cuts Sedghi Gamechi, Zahra Arias‐Lorza, Andres M. Saghir, Zaigham Bos, Daniel de Bruijne, Marleen Med Phys QUANTITATIVE IMAGING AND IMAGE PROCESSING PURPOSE: Accurate segmentation of the pulmonary arteries and aorta is important due to the association of the diameter and the shape of these vessels with several cardiovascular diseases and with the risk of exacerbations and death in patients with chronic obstructive pulmonary disease. We propose a fully automatic method based on an optimal surface graph‐cut algorithm to quantify the full 3D shape and the diameters of the pulmonary arteries and aorta in noncontrast computed tomography (CT) scans. METHODS: The proposed algorithm first extracts seed points in the right and left pulmonary arteries, the pulmonary trunk, and the ascending and descending aorta by using multi‐atlas registration. Subsequently, the centerlines of the pulmonary arteries and aorta are extracted by a minimum cost path tracking between the extracted seed points, with a cost based on a combination of lumen intensity similarity and multiscale medialness in three planes. The centerlines are refined by applying the path tracking algorithm to curved multiplanar reformatted scans and are then smoothed and dilated nonuniformly according to the extracted local vessel radius from the medialness filter. The resulting coarse estimates of the vessels are used as initialization for a graph‐cut segmentation. Once the vessels are segmented, the diameters of the pulmonary artery (PA) and the ascending aorta (AA) and the [Formula: see text] ratio are automatically calculated both in a single axial slice and in a 10 mm volume around the automatically extracted PA bifurcation level. The method is evaluated on noncontrast CT scans from the Danish Lung Cancer Screening Trial (DLCST). Segmentation accuracy is determined by comparing with manual annotations on 25 CT scans. Intraclass correlation (ICC) between manual and automatic diameters, both measured in axial slices at the PA bifurcation level, is computed on an additional 200 CT scans. Repeatability of the automated 3D volumetric diameter and [Formula: see text] ratio calculations (perpendicular to the vessel axis) are evaluated on 118 scan–rescan pairs with an average in‐between time of 3 months. RESULTS: We obtained a Dice segmentation overlap of 0.94 ± 0.02 for pulmonary arteries and 0.96 ± 0.01 for the aorta, with a mean surface distance of 0.62 ± 0.33 mm and 0.43 ± 0.07 mm, respectively. ICC between manual and automatic in‐slice diameter measures was 0.92 for PA, 0.97 for AA, and 0.90 for the [Formula: see text] ratio, and for automatic diameters in 3D volumes around the PA bifurcation level between scan and rescan was 0.89, 0.95, and 0.86, respectively. CONCLUSION: The proposed automatic segmentation method can reliably extract diameters of the large arteries in non‐ECG‐gated noncontrast CT scans such as are acquired in lung cancer screening. John Wiley and Sons Inc. 2021-10-29 2021-12 /pmc/articles/PMC9298252/ /pubmed/34653274 http://dx.doi.org/10.1002/mp.15289 Text en © 2021 The Authors. Medical Physics published by Wiley Periodicals LLC on behalf of American Association of Physicists in Medicine https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the terms of the http://creativecommons.org/licenses/by-nc-nd/4.0/ (https://creativecommons.org/licenses/by-nc-nd/4.0/) License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non‐commercial and no modifications or adaptations are made.
spellingShingle QUANTITATIVE IMAGING AND IMAGE PROCESSING
Sedghi Gamechi, Zahra
Arias‐Lorza, Andres M.
Saghir, Zaigham
Bos, Daniel
de Bruijne, Marleen
Assessment of fully automatic segmentation of pulmonary artery and aorta on noncontrast CT with optimal surface graph cuts
title Assessment of fully automatic segmentation of pulmonary artery and aorta on noncontrast CT with optimal surface graph cuts
title_full Assessment of fully automatic segmentation of pulmonary artery and aorta on noncontrast CT with optimal surface graph cuts
title_fullStr Assessment of fully automatic segmentation of pulmonary artery and aorta on noncontrast CT with optimal surface graph cuts
title_full_unstemmed Assessment of fully automatic segmentation of pulmonary artery and aorta on noncontrast CT with optimal surface graph cuts
title_short Assessment of fully automatic segmentation of pulmonary artery and aorta on noncontrast CT with optimal surface graph cuts
title_sort assessment of fully automatic segmentation of pulmonary artery and aorta on noncontrast ct with optimal surface graph cuts
topic QUANTITATIVE IMAGING AND IMAGE PROCESSING
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9298252/
https://www.ncbi.nlm.nih.gov/pubmed/34653274
http://dx.doi.org/10.1002/mp.15289
work_keys_str_mv AT sedghigamechizahra assessmentoffullyautomaticsegmentationofpulmonaryarteryandaortaonnoncontrastctwithoptimalsurfacegraphcuts
AT ariaslorzaandresm assessmentoffullyautomaticsegmentationofpulmonaryarteryandaortaonnoncontrastctwithoptimalsurfacegraphcuts
AT saghirzaigham assessmentoffullyautomaticsegmentationofpulmonaryarteryandaortaonnoncontrastctwithoptimalsurfacegraphcuts
AT bosdaniel assessmentoffullyautomaticsegmentationofpulmonaryarteryandaortaonnoncontrastctwithoptimalsurfacegraphcuts
AT debruijnemarleen assessmentoffullyautomaticsegmentationofpulmonaryarteryandaortaonnoncontrastctwithoptimalsurfacegraphcuts