Cargando…

Switching the Mechanism of NADH Photooxidation by Supramolecular Interactions

A series of three Ru(II) polypyridine complexes was investigated for the selective photocatalytic oxidation of NAD(P)H to NAD(P)(+) in water. A combination of (time‐resolved) spectroscopic studies and photocatalysis experiments revealed that ligand design can be used to control the mechanism of the...

Descripción completa

Detalles Bibliográficos
Autores principales: Mengele, Alexander K., Weixler, Dominik, Chettri, Avinash, Maurer, Maite, Huber, Fabian Lukas, Seibold, Gerd M., Dietzek, Benjamin, Eikmanns, Bernhard J., Rau, Sven
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9298348/
https://www.ncbi.nlm.nih.gov/pubmed/34547151
http://dx.doi.org/10.1002/chem.202103029
Descripción
Sumario:A series of three Ru(II) polypyridine complexes was investigated for the selective photocatalytic oxidation of NAD(P)H to NAD(P)(+) in water. A combination of (time‐resolved) spectroscopic studies and photocatalysis experiments revealed that ligand design can be used to control the mechanism of the photooxidation: For prototypical Ru(II) complexes a (1)O(2) pathway was found. Rudppz ([(tbbpy)(2)Ru(dppz)]Cl(2), tbbpy=4,4'‐di‐tert‐butyl‐2,2'‐bipyridine, dppz=dipyrido[3,2‐a:2′,3′‐c]phenazine), instead, initiated the cofactor oxidation by electron transfer from NAD(P)H enabled by supramolecular binding between substrate and catalyst. Expulsion of the photoproduct NAD(P)(+) from the supramolecular binding site in Rudppz allowed very efficient turnover. Therefore, Rudppz permits repetitive selective assembly and oxidative conversion of reduced naturally occurring nicotinamides by recognizing the redox state of the cofactor under formation of H(2)O(2) as additional product. This photocatalytic process can fuel discontinuous photobiocatalysis.