Cargando…
Multi-Armed Bandits in Brain-Computer Interfaces
The multi-armed bandit (MAB) problem models a decision-maker that optimizes its actions based on current and acquired new knowledge to maximize its reward. This type of online decision is prominent in many procedures of Brain-Computer Interfaces (BCIs) and MAB has previously been used to investigate...
Autores principales: | Heskebeck, Frida, Bergeling, Carolina, Bernhardsson, Bo |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9298543/ https://www.ncbi.nlm.nih.gov/pubmed/35874164 http://dx.doi.org/10.3389/fnhum.2022.931085 |
Ejemplares similares
-
An open-source human-in-the-loop BCI research framework: method and design
por: Gemborn Nilsson, Martin, et al.
Publicado: (2023) -
Introduction to multi-armed bandits
por: Slivkins, Aleksandrs
Publicado: (2019) -
Editorial: Women in brain-computer interfaces
por: Lugo, Zulay R., et al.
Publicado: (2023) -
Editorial: Deep Learning in Brain-Computer Interface
por: Ahn, Minkyu, et al.
Publicado: (2022) -
Editorial: Brain-connectivity-based computer interfaces
por: Boscolo Galazzo, Ilaria, et al.
Publicado: (2023)