Cargando…

Association of Cord Blood Glucose, Sodium, Potassium, and Calcium Levels With Neonatal Birth Asphyxia: A Hospital-Based Study

Context Neonatal birth/perinatal asphyxia is a serious condition with the potential to cause damage to various tissues of the body especially the brain. Hypoxia can cause metabolic disturbances, which in turn can lead to imbalances in the levels of glucose, electrolytes, and calcium, which can furth...

Descripción completa

Detalles Bibliográficos
Autores principales: Pyati, Anand K, Khanikekar, Pradeep K, Shetkar, Nagaraj R, Patil, Mallanagouda M, Jaju, Purushottam B, Karra, Madhu Latha, Pyati, Sudharani A, Shannawaz, Mohd
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Cureus 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9298659/
https://www.ncbi.nlm.nih.gov/pubmed/35875312
http://dx.doi.org/10.7759/cureus.26115
Descripción
Sumario:Context Neonatal birth/perinatal asphyxia is a serious condition with the potential to cause damage to various tissues of the body especially the brain. Hypoxia can cause metabolic disturbances, which in turn can lead to imbalances in the levels of glucose, electrolytes, and calcium, which can further worsen the condition. Early detection of these biochemical derangements and immediate correction can prevent the complications and lifelong disabilities of birth asphyxia due to injury to vital organs particularly the brain. The aim is to assess any correlation between the cord blood glucose, electrolytes, and calcium levels and the severity of birth asphyxia. Methods and material In this study, 50 birth asphyxia neonates with birth weight >2.5 kg, and a 5-minute Apgar score ≤ 6 at birth with clinical evidence of asphyxia were compared with healthy neonates with birth weight > 2.5 kg, and a 5-minute Apgar score > 7. In all the cases and controls, cord blood glucose was estimated by glucose oxidase and peroxidase (GOD-POD) method, total calcium by Arsenazo method, and sodium and potassium were estimated by ion-selective Electrode (ISE) method using fully automated biochemistry analyzers. Results The mean cord blood concentrations of glucose, sodium, potassium, and calcium were significantly lower among birth asphyxia neonates in comparison with that of controls (p < 0.05). The correlation coefficient (r) for the study variables among cases indicates that there is a low to moderate positive correlation between the 5-minute Apgar score which is a measure of severity of birth asphyxia and cord blood concentrations of glucose, sodium, and calcium. Conclusion In our study, birth asphyxiated neonates were found to have statistically significant low levels of cord blood glucose and electrolytes like sodium and calcium except for potassium. There was a low to moderate positive correlation between cord blood glucose and electrolyte concentrations with the severity of birth asphyxia. Analysis of cord blood for these simple biochemical tests can help pediatricians in the active management of birth asphyxia cases.