Cargando…

Multi-Coil MRI Reconstruction Challenge—Assessing Brain MRI Reconstruction Models and Their Generalizability to Varying Coil Configurations

Deep-learning-based brain magnetic resonance imaging (MRI) reconstruction methods have the potential to accelerate the MRI acquisition process. Nevertheless, the scientific community lacks appropriate benchmarks to assess the MRI reconstruction quality of high-resolution brain images, and evaluate h...

Descripción completa

Detalles Bibliográficos
Autores principales: Beauferris, Youssef, Teuwen, Jonas, Karkalousos, Dimitrios, Moriakov, Nikita, Caan, Matthan, Yiasemis, George, Rodrigues, Lívia, Lopes, Alexandre, Pedrini, Helio, Rittner, Letícia, Dannecker, Maik, Studenyak, Viktor, Gröger, Fabian, Vyas, Devendra, Faghih-Roohi, Shahrooz, Kumar Jethi, Amrit, Chandra Raju, Jaya, Sivaprakasam, Mohanasankar, Lasby, Mike, Nogovitsyn, Nikita, Loos, Wallace, Frayne, Richard, Souza, Roberto
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Frontiers Media S.A. 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9298878/
https://www.ncbi.nlm.nih.gov/pubmed/35873808
http://dx.doi.org/10.3389/fnins.2022.919186
_version_ 1784750813793484800
author Beauferris, Youssef
Teuwen, Jonas
Karkalousos, Dimitrios
Moriakov, Nikita
Caan, Matthan
Yiasemis, George
Rodrigues, Lívia
Lopes, Alexandre
Pedrini, Helio
Rittner, Letícia
Dannecker, Maik
Studenyak, Viktor
Gröger, Fabian
Vyas, Devendra
Faghih-Roohi, Shahrooz
Kumar Jethi, Amrit
Chandra Raju, Jaya
Sivaprakasam, Mohanasankar
Lasby, Mike
Nogovitsyn, Nikita
Loos, Wallace
Frayne, Richard
Souza, Roberto
author_facet Beauferris, Youssef
Teuwen, Jonas
Karkalousos, Dimitrios
Moriakov, Nikita
Caan, Matthan
Yiasemis, George
Rodrigues, Lívia
Lopes, Alexandre
Pedrini, Helio
Rittner, Letícia
Dannecker, Maik
Studenyak, Viktor
Gröger, Fabian
Vyas, Devendra
Faghih-Roohi, Shahrooz
Kumar Jethi, Amrit
Chandra Raju, Jaya
Sivaprakasam, Mohanasankar
Lasby, Mike
Nogovitsyn, Nikita
Loos, Wallace
Frayne, Richard
Souza, Roberto
author_sort Beauferris, Youssef
collection PubMed
description Deep-learning-based brain magnetic resonance imaging (MRI) reconstruction methods have the potential to accelerate the MRI acquisition process. Nevertheless, the scientific community lacks appropriate benchmarks to assess the MRI reconstruction quality of high-resolution brain images, and evaluate how these proposed algorithms will behave in the presence of small, but expected data distribution shifts. The multi-coil MRI (MC-MRI) reconstruction challenge provides a benchmark that aims at addressing these issues, using a large dataset of high-resolution, three-dimensional, T1-weighted MRI scans. The challenge has two primary goals: (1) to compare different MRI reconstruction models on this dataset and (2) to assess the generalizability of these models to data acquired with a different number of receiver coils. In this paper, we describe the challenge experimental design and summarize the results of a set of baseline and state-of-the-art brain MRI reconstruction models. We provide relevant comparative information on the current MRI reconstruction state-of-the-art and highlight the challenges of obtaining generalizable models that are required prior to broader clinical adoption. The MC-MRI benchmark data, evaluation code, and current challenge leaderboard are publicly available. They provide an objective performance assessment for future developments in the field of brain MRI reconstruction.
format Online
Article
Text
id pubmed-9298878
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher Frontiers Media S.A.
record_format MEDLINE/PubMed
spelling pubmed-92988782022-07-21 Multi-Coil MRI Reconstruction Challenge—Assessing Brain MRI Reconstruction Models and Their Generalizability to Varying Coil Configurations Beauferris, Youssef Teuwen, Jonas Karkalousos, Dimitrios Moriakov, Nikita Caan, Matthan Yiasemis, George Rodrigues, Lívia Lopes, Alexandre Pedrini, Helio Rittner, Letícia Dannecker, Maik Studenyak, Viktor Gröger, Fabian Vyas, Devendra Faghih-Roohi, Shahrooz Kumar Jethi, Amrit Chandra Raju, Jaya Sivaprakasam, Mohanasankar Lasby, Mike Nogovitsyn, Nikita Loos, Wallace Frayne, Richard Souza, Roberto Front Neurosci Neuroscience Deep-learning-based brain magnetic resonance imaging (MRI) reconstruction methods have the potential to accelerate the MRI acquisition process. Nevertheless, the scientific community lacks appropriate benchmarks to assess the MRI reconstruction quality of high-resolution brain images, and evaluate how these proposed algorithms will behave in the presence of small, but expected data distribution shifts. The multi-coil MRI (MC-MRI) reconstruction challenge provides a benchmark that aims at addressing these issues, using a large dataset of high-resolution, three-dimensional, T1-weighted MRI scans. The challenge has two primary goals: (1) to compare different MRI reconstruction models on this dataset and (2) to assess the generalizability of these models to data acquired with a different number of receiver coils. In this paper, we describe the challenge experimental design and summarize the results of a set of baseline and state-of-the-art brain MRI reconstruction models. We provide relevant comparative information on the current MRI reconstruction state-of-the-art and highlight the challenges of obtaining generalizable models that are required prior to broader clinical adoption. The MC-MRI benchmark data, evaluation code, and current challenge leaderboard are publicly available. They provide an objective performance assessment for future developments in the field of brain MRI reconstruction. Frontiers Media S.A. 2022-07-06 /pmc/articles/PMC9298878/ /pubmed/35873808 http://dx.doi.org/10.3389/fnins.2022.919186 Text en Copyright © 2022 Beauferris, Teuwen, Karkalousos, Moriakov, Caan, Yiasemis, Rodrigues, Lopes, Pedrini, Rittner, Dannecker, Studenyak, Gröger, Vyas, Faghih-Roohi, Kumar Jethi, Chandra Raju, Sivaprakasam, Lasby, Nogovitsyn, Loos, Frayne and Souza. https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
spellingShingle Neuroscience
Beauferris, Youssef
Teuwen, Jonas
Karkalousos, Dimitrios
Moriakov, Nikita
Caan, Matthan
Yiasemis, George
Rodrigues, Lívia
Lopes, Alexandre
Pedrini, Helio
Rittner, Letícia
Dannecker, Maik
Studenyak, Viktor
Gröger, Fabian
Vyas, Devendra
Faghih-Roohi, Shahrooz
Kumar Jethi, Amrit
Chandra Raju, Jaya
Sivaprakasam, Mohanasankar
Lasby, Mike
Nogovitsyn, Nikita
Loos, Wallace
Frayne, Richard
Souza, Roberto
Multi-Coil MRI Reconstruction Challenge—Assessing Brain MRI Reconstruction Models and Their Generalizability to Varying Coil Configurations
title Multi-Coil MRI Reconstruction Challenge—Assessing Brain MRI Reconstruction Models and Their Generalizability to Varying Coil Configurations
title_full Multi-Coil MRI Reconstruction Challenge—Assessing Brain MRI Reconstruction Models and Their Generalizability to Varying Coil Configurations
title_fullStr Multi-Coil MRI Reconstruction Challenge—Assessing Brain MRI Reconstruction Models and Their Generalizability to Varying Coil Configurations
title_full_unstemmed Multi-Coil MRI Reconstruction Challenge—Assessing Brain MRI Reconstruction Models and Their Generalizability to Varying Coil Configurations
title_short Multi-Coil MRI Reconstruction Challenge—Assessing Brain MRI Reconstruction Models and Their Generalizability to Varying Coil Configurations
title_sort multi-coil mri reconstruction challenge—assessing brain mri reconstruction models and their generalizability to varying coil configurations
topic Neuroscience
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9298878/
https://www.ncbi.nlm.nih.gov/pubmed/35873808
http://dx.doi.org/10.3389/fnins.2022.919186
work_keys_str_mv AT beauferrisyoussef multicoilmrireconstructionchallengeassessingbrainmrireconstructionmodelsandtheirgeneralizabilitytovaryingcoilconfigurations
AT teuwenjonas multicoilmrireconstructionchallengeassessingbrainmrireconstructionmodelsandtheirgeneralizabilitytovaryingcoilconfigurations
AT karkalousosdimitrios multicoilmrireconstructionchallengeassessingbrainmrireconstructionmodelsandtheirgeneralizabilitytovaryingcoilconfigurations
AT moriakovnikita multicoilmrireconstructionchallengeassessingbrainmrireconstructionmodelsandtheirgeneralizabilitytovaryingcoilconfigurations
AT caanmatthan multicoilmrireconstructionchallengeassessingbrainmrireconstructionmodelsandtheirgeneralizabilitytovaryingcoilconfigurations
AT yiasemisgeorge multicoilmrireconstructionchallengeassessingbrainmrireconstructionmodelsandtheirgeneralizabilitytovaryingcoilconfigurations
AT rodrigueslivia multicoilmrireconstructionchallengeassessingbrainmrireconstructionmodelsandtheirgeneralizabilitytovaryingcoilconfigurations
AT lopesalexandre multicoilmrireconstructionchallengeassessingbrainmrireconstructionmodelsandtheirgeneralizabilitytovaryingcoilconfigurations
AT pedrinihelio multicoilmrireconstructionchallengeassessingbrainmrireconstructionmodelsandtheirgeneralizabilitytovaryingcoilconfigurations
AT rittnerleticia multicoilmrireconstructionchallengeassessingbrainmrireconstructionmodelsandtheirgeneralizabilitytovaryingcoilconfigurations
AT danneckermaik multicoilmrireconstructionchallengeassessingbrainmrireconstructionmodelsandtheirgeneralizabilitytovaryingcoilconfigurations
AT studenyakviktor multicoilmrireconstructionchallengeassessingbrainmrireconstructionmodelsandtheirgeneralizabilitytovaryingcoilconfigurations
AT grogerfabian multicoilmrireconstructionchallengeassessingbrainmrireconstructionmodelsandtheirgeneralizabilitytovaryingcoilconfigurations
AT vyasdevendra multicoilmrireconstructionchallengeassessingbrainmrireconstructionmodelsandtheirgeneralizabilitytovaryingcoilconfigurations
AT faghihroohishahrooz multicoilmrireconstructionchallengeassessingbrainmrireconstructionmodelsandtheirgeneralizabilitytovaryingcoilconfigurations
AT kumarjethiamrit multicoilmrireconstructionchallengeassessingbrainmrireconstructionmodelsandtheirgeneralizabilitytovaryingcoilconfigurations
AT chandrarajujaya multicoilmrireconstructionchallengeassessingbrainmrireconstructionmodelsandtheirgeneralizabilitytovaryingcoilconfigurations
AT sivaprakasammohanasankar multicoilmrireconstructionchallengeassessingbrainmrireconstructionmodelsandtheirgeneralizabilitytovaryingcoilconfigurations
AT lasbymike multicoilmrireconstructionchallengeassessingbrainmrireconstructionmodelsandtheirgeneralizabilitytovaryingcoilconfigurations
AT nogovitsynnikita multicoilmrireconstructionchallengeassessingbrainmrireconstructionmodelsandtheirgeneralizabilitytovaryingcoilconfigurations
AT looswallace multicoilmrireconstructionchallengeassessingbrainmrireconstructionmodelsandtheirgeneralizabilitytovaryingcoilconfigurations
AT fraynerichard multicoilmrireconstructionchallengeassessingbrainmrireconstructionmodelsandtheirgeneralizabilitytovaryingcoilconfigurations
AT souzaroberto multicoilmrireconstructionchallengeassessingbrainmrireconstructionmodelsandtheirgeneralizabilitytovaryingcoilconfigurations