Cargando…
Multi-Coil MRI Reconstruction Challenge—Assessing Brain MRI Reconstruction Models and Their Generalizability to Varying Coil Configurations
Deep-learning-based brain magnetic resonance imaging (MRI) reconstruction methods have the potential to accelerate the MRI acquisition process. Nevertheless, the scientific community lacks appropriate benchmarks to assess the MRI reconstruction quality of high-resolution brain images, and evaluate h...
Autores principales: | , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9298878/ https://www.ncbi.nlm.nih.gov/pubmed/35873808 http://dx.doi.org/10.3389/fnins.2022.919186 |
_version_ | 1784750813793484800 |
---|---|
author | Beauferris, Youssef Teuwen, Jonas Karkalousos, Dimitrios Moriakov, Nikita Caan, Matthan Yiasemis, George Rodrigues, Lívia Lopes, Alexandre Pedrini, Helio Rittner, Letícia Dannecker, Maik Studenyak, Viktor Gröger, Fabian Vyas, Devendra Faghih-Roohi, Shahrooz Kumar Jethi, Amrit Chandra Raju, Jaya Sivaprakasam, Mohanasankar Lasby, Mike Nogovitsyn, Nikita Loos, Wallace Frayne, Richard Souza, Roberto |
author_facet | Beauferris, Youssef Teuwen, Jonas Karkalousos, Dimitrios Moriakov, Nikita Caan, Matthan Yiasemis, George Rodrigues, Lívia Lopes, Alexandre Pedrini, Helio Rittner, Letícia Dannecker, Maik Studenyak, Viktor Gröger, Fabian Vyas, Devendra Faghih-Roohi, Shahrooz Kumar Jethi, Amrit Chandra Raju, Jaya Sivaprakasam, Mohanasankar Lasby, Mike Nogovitsyn, Nikita Loos, Wallace Frayne, Richard Souza, Roberto |
author_sort | Beauferris, Youssef |
collection | PubMed |
description | Deep-learning-based brain magnetic resonance imaging (MRI) reconstruction methods have the potential to accelerate the MRI acquisition process. Nevertheless, the scientific community lacks appropriate benchmarks to assess the MRI reconstruction quality of high-resolution brain images, and evaluate how these proposed algorithms will behave in the presence of small, but expected data distribution shifts. The multi-coil MRI (MC-MRI) reconstruction challenge provides a benchmark that aims at addressing these issues, using a large dataset of high-resolution, three-dimensional, T1-weighted MRI scans. The challenge has two primary goals: (1) to compare different MRI reconstruction models on this dataset and (2) to assess the generalizability of these models to data acquired with a different number of receiver coils. In this paper, we describe the challenge experimental design and summarize the results of a set of baseline and state-of-the-art brain MRI reconstruction models. We provide relevant comparative information on the current MRI reconstruction state-of-the-art and highlight the challenges of obtaining generalizable models that are required prior to broader clinical adoption. The MC-MRI benchmark data, evaluation code, and current challenge leaderboard are publicly available. They provide an objective performance assessment for future developments in the field of brain MRI reconstruction. |
format | Online Article Text |
id | pubmed-9298878 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Frontiers Media S.A. |
record_format | MEDLINE/PubMed |
spelling | pubmed-92988782022-07-21 Multi-Coil MRI Reconstruction Challenge—Assessing Brain MRI Reconstruction Models and Their Generalizability to Varying Coil Configurations Beauferris, Youssef Teuwen, Jonas Karkalousos, Dimitrios Moriakov, Nikita Caan, Matthan Yiasemis, George Rodrigues, Lívia Lopes, Alexandre Pedrini, Helio Rittner, Letícia Dannecker, Maik Studenyak, Viktor Gröger, Fabian Vyas, Devendra Faghih-Roohi, Shahrooz Kumar Jethi, Amrit Chandra Raju, Jaya Sivaprakasam, Mohanasankar Lasby, Mike Nogovitsyn, Nikita Loos, Wallace Frayne, Richard Souza, Roberto Front Neurosci Neuroscience Deep-learning-based brain magnetic resonance imaging (MRI) reconstruction methods have the potential to accelerate the MRI acquisition process. Nevertheless, the scientific community lacks appropriate benchmarks to assess the MRI reconstruction quality of high-resolution brain images, and evaluate how these proposed algorithms will behave in the presence of small, but expected data distribution shifts. The multi-coil MRI (MC-MRI) reconstruction challenge provides a benchmark that aims at addressing these issues, using a large dataset of high-resolution, three-dimensional, T1-weighted MRI scans. The challenge has two primary goals: (1) to compare different MRI reconstruction models on this dataset and (2) to assess the generalizability of these models to data acquired with a different number of receiver coils. In this paper, we describe the challenge experimental design and summarize the results of a set of baseline and state-of-the-art brain MRI reconstruction models. We provide relevant comparative information on the current MRI reconstruction state-of-the-art and highlight the challenges of obtaining generalizable models that are required prior to broader clinical adoption. The MC-MRI benchmark data, evaluation code, and current challenge leaderboard are publicly available. They provide an objective performance assessment for future developments in the field of brain MRI reconstruction. Frontiers Media S.A. 2022-07-06 /pmc/articles/PMC9298878/ /pubmed/35873808 http://dx.doi.org/10.3389/fnins.2022.919186 Text en Copyright © 2022 Beauferris, Teuwen, Karkalousos, Moriakov, Caan, Yiasemis, Rodrigues, Lopes, Pedrini, Rittner, Dannecker, Studenyak, Gröger, Vyas, Faghih-Roohi, Kumar Jethi, Chandra Raju, Sivaprakasam, Lasby, Nogovitsyn, Loos, Frayne and Souza. https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
spellingShingle | Neuroscience Beauferris, Youssef Teuwen, Jonas Karkalousos, Dimitrios Moriakov, Nikita Caan, Matthan Yiasemis, George Rodrigues, Lívia Lopes, Alexandre Pedrini, Helio Rittner, Letícia Dannecker, Maik Studenyak, Viktor Gröger, Fabian Vyas, Devendra Faghih-Roohi, Shahrooz Kumar Jethi, Amrit Chandra Raju, Jaya Sivaprakasam, Mohanasankar Lasby, Mike Nogovitsyn, Nikita Loos, Wallace Frayne, Richard Souza, Roberto Multi-Coil MRI Reconstruction Challenge—Assessing Brain MRI Reconstruction Models and Their Generalizability to Varying Coil Configurations |
title | Multi-Coil MRI Reconstruction Challenge—Assessing Brain MRI Reconstruction Models and Their Generalizability to Varying Coil Configurations |
title_full | Multi-Coil MRI Reconstruction Challenge—Assessing Brain MRI Reconstruction Models and Their Generalizability to Varying Coil Configurations |
title_fullStr | Multi-Coil MRI Reconstruction Challenge—Assessing Brain MRI Reconstruction Models and Their Generalizability to Varying Coil Configurations |
title_full_unstemmed | Multi-Coil MRI Reconstruction Challenge—Assessing Brain MRI Reconstruction Models and Their Generalizability to Varying Coil Configurations |
title_short | Multi-Coil MRI Reconstruction Challenge—Assessing Brain MRI Reconstruction Models and Their Generalizability to Varying Coil Configurations |
title_sort | multi-coil mri reconstruction challenge—assessing brain mri reconstruction models and their generalizability to varying coil configurations |
topic | Neuroscience |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9298878/ https://www.ncbi.nlm.nih.gov/pubmed/35873808 http://dx.doi.org/10.3389/fnins.2022.919186 |
work_keys_str_mv | AT beauferrisyoussef multicoilmrireconstructionchallengeassessingbrainmrireconstructionmodelsandtheirgeneralizabilitytovaryingcoilconfigurations AT teuwenjonas multicoilmrireconstructionchallengeassessingbrainmrireconstructionmodelsandtheirgeneralizabilitytovaryingcoilconfigurations AT karkalousosdimitrios multicoilmrireconstructionchallengeassessingbrainmrireconstructionmodelsandtheirgeneralizabilitytovaryingcoilconfigurations AT moriakovnikita multicoilmrireconstructionchallengeassessingbrainmrireconstructionmodelsandtheirgeneralizabilitytovaryingcoilconfigurations AT caanmatthan multicoilmrireconstructionchallengeassessingbrainmrireconstructionmodelsandtheirgeneralizabilitytovaryingcoilconfigurations AT yiasemisgeorge multicoilmrireconstructionchallengeassessingbrainmrireconstructionmodelsandtheirgeneralizabilitytovaryingcoilconfigurations AT rodrigueslivia multicoilmrireconstructionchallengeassessingbrainmrireconstructionmodelsandtheirgeneralizabilitytovaryingcoilconfigurations AT lopesalexandre multicoilmrireconstructionchallengeassessingbrainmrireconstructionmodelsandtheirgeneralizabilitytovaryingcoilconfigurations AT pedrinihelio multicoilmrireconstructionchallengeassessingbrainmrireconstructionmodelsandtheirgeneralizabilitytovaryingcoilconfigurations AT rittnerleticia multicoilmrireconstructionchallengeassessingbrainmrireconstructionmodelsandtheirgeneralizabilitytovaryingcoilconfigurations AT danneckermaik multicoilmrireconstructionchallengeassessingbrainmrireconstructionmodelsandtheirgeneralizabilitytovaryingcoilconfigurations AT studenyakviktor multicoilmrireconstructionchallengeassessingbrainmrireconstructionmodelsandtheirgeneralizabilitytovaryingcoilconfigurations AT grogerfabian multicoilmrireconstructionchallengeassessingbrainmrireconstructionmodelsandtheirgeneralizabilitytovaryingcoilconfigurations AT vyasdevendra multicoilmrireconstructionchallengeassessingbrainmrireconstructionmodelsandtheirgeneralizabilitytovaryingcoilconfigurations AT faghihroohishahrooz multicoilmrireconstructionchallengeassessingbrainmrireconstructionmodelsandtheirgeneralizabilitytovaryingcoilconfigurations AT kumarjethiamrit multicoilmrireconstructionchallengeassessingbrainmrireconstructionmodelsandtheirgeneralizabilitytovaryingcoilconfigurations AT chandrarajujaya multicoilmrireconstructionchallengeassessingbrainmrireconstructionmodelsandtheirgeneralizabilitytovaryingcoilconfigurations AT sivaprakasammohanasankar multicoilmrireconstructionchallengeassessingbrainmrireconstructionmodelsandtheirgeneralizabilitytovaryingcoilconfigurations AT lasbymike multicoilmrireconstructionchallengeassessingbrainmrireconstructionmodelsandtheirgeneralizabilitytovaryingcoilconfigurations AT nogovitsynnikita multicoilmrireconstructionchallengeassessingbrainmrireconstructionmodelsandtheirgeneralizabilitytovaryingcoilconfigurations AT looswallace multicoilmrireconstructionchallengeassessingbrainmrireconstructionmodelsandtheirgeneralizabilitytovaryingcoilconfigurations AT fraynerichard multicoilmrireconstructionchallengeassessingbrainmrireconstructionmodelsandtheirgeneralizabilitytovaryingcoilconfigurations AT souzaroberto multicoilmrireconstructionchallengeassessingbrainmrireconstructionmodelsandtheirgeneralizabilitytovaryingcoilconfigurations |