Cargando…

An In Vitro Microneutralization Assay for Influenza Virus Serology

Influenza is an infectious respiratory disease with significant morbidity and mortality rates among people of all ages. Influenza viruses spread and evolve rapidly in the human population. Different immune histories, given by previous exposures to influenza virus infections and/or vaccinations, resu...

Descripción completa

Detalles Bibliográficos
Autores principales: Cuevas, Frans, Kawabata, Hisaaki, Krammer, Florian, Carreño, Juan Manuel
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9298957/
https://www.ncbi.nlm.nih.gov/pubmed/35848945
http://dx.doi.org/10.1002/cpz1.465
Descripción
Sumario:Influenza is an infectious respiratory disease with significant morbidity and mortality rates among people of all ages. Influenza viruses spread and evolve rapidly in the human population. Different immune histories, given by previous exposures to influenza virus infections and/or vaccinations, result in a great diversity of humoral and cellular immune responses. Understanding protective immune responses induced against circulating virus strains and potential pandemic strains is vital for infection prevention and disease mitigation. Vaccine formulations for seasonal influenza must be reformulated annually to stay abreast of occurring virus mutations. Assays to measure the capacity of antibodies to neutralize influenza viruses provide a good estimate of protection against future infections with strains similar or identical to those used in the assay. Here, we describe a detailed protocol of our standard in vitro microneutralization assay to assess the neutralization activity of polyclonal sera or purified monoclonal antibodies. © 2022 The Authors. Current Protocols published by Wiley Periodicals LLC. This article was corrected on 27 August 2022. See the end of the full text for details. Basic Protocol: Microneutralization assay to assess virus inhibition by serum or monoclonal antibodies Support Protocol 1: Preparation of cDMEM Support Protocol 2: Preparation and aliquoting of TPCK‐treated trypsin Support Protocol 3: Inactivation of serum samples by RDE treatment