Cargando…
Learning a preconditioner to accelerate compressed sensing reconstructions in MRI
PURPOSE: To learn a preconditioner that accelerates parallel imaging (PI) and compressed sensing (CS) reconstructions. METHODS: A convolutional neural network (CNN) with residual connections was used to train a preconditioning operator. Training and validation data were simulated using 50% brain ima...
Autores principales: | Koolstra, Kirsten, Remis, Rob |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9299023/ https://www.ncbi.nlm.nih.gov/pubmed/34752655 http://dx.doi.org/10.1002/mrm.29073 |
Ejemplares similares
-
Accelerating compressed sensing in parallel imaging reconstructions using an efficient circulant preconditioner for cartesian trajectories
por: Koolstra, Kirsten, et al.
Publicado: (2018) -
High‐permittivity pad design tool for 7T neuroimaging and 3T body imaging
por: van Gemert, Jeroen, et al.
Publicado: (2018) -
Personalized synthetic MR imaging with deep learning enhancements
por: Pal, Subrata, et al.
Publicado: (2022) -
A ranking of diffusion MRI compartment models with in vivo human brain data
por: Ferizi, Uran, et al.
Publicado: (2014) -
A comparative study of gradient nonlinearity correction strategies for processing diffusion data obtained with ultra‐strong gradient MRI scanners
por: Rudrapatna, Umesh, et al.
Publicado: (2020)