Cargando…

Quantifying Intracellular Single Vesicular Catecholamine Concentration with Open Carbon Nanopipettes to Unveil the Effect of L‐DOPA on Vesicular Structure

Understanding the regulatory mechanisms of exocytosis is essential for uncovering the pathologies of neuronal disorders and developing related pharmaceuticals. In this work intracellular vesicle impact electrochemical cytometry (IVIEC) measurements with different‐sized (50–500 nm radius) open carbon...

Descripción completa

Detalles Bibliográficos
Autores principales: Hu, Keke, Le Vo, Kim Long, Hatamie, Amir, Ewing, Andrew G.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9299131/
https://www.ncbi.nlm.nih.gov/pubmed/34734466
http://dx.doi.org/10.1002/anie.202113406
Descripción
Sumario:Understanding the regulatory mechanisms of exocytosis is essential for uncovering the pathologies of neuronal disorders and developing related pharmaceuticals. In this work intracellular vesicle impact electrochemical cytometry (IVIEC) measurements with different‐sized (50–500 nm radius) open carbon nanopipettes (CNPs) were performed to quantify the vesicular content and release kinetics of specific vesicle populations grouped by orifice sizes. Intracellular vesicles with radius below 100 nm were captured and narrowed between 50 and 100 nm. On the basis of this, single vesicular catecholamine concentrations in the intracellular environment were quantified as 0.23–1.1 M. Our results with L‐3,4‐dihydroxyphenylalanine (L‐DOPA)‐exposure indicate that L‐DOPA regulates exocytosis by increasing the dense core size and vesicular content while catecholamine concentrations did not show obvious alterations. These were all achieved simultaneously and relatively noninvasively with open CNPs.