Cargando…

Multifunctional Polyoxometalate Platforms for Supramolecular Light‐Driven Hydrogen Evolution

Multifunctional supramolecular systems are a central research topic in light‐driven solar energy conversion. Here, we report a polyoxometalate (POM)‐based supramolecular dyad, where two platinum‐complex hydrogen evolution catalysts are covalently anchored to an Anderson polyoxomolybdate anion. Supra...

Descripción completa

Detalles Bibliográficos
Autores principales: Maloul, Salam, van den Borg, Matthias, Müller, Carolin, Zedler, Linda, Mengele, Alexander K., Gaissmaier, Daniel, Jacob, Timo, Rau, Sven, Dietzek‐Ivanšić, Benjamin, Streb, Carsten
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9299148/
https://www.ncbi.nlm.nih.gov/pubmed/34719797
http://dx.doi.org/10.1002/chem.202103817
Descripción
Sumario:Multifunctional supramolecular systems are a central research topic in light‐driven solar energy conversion. Here, we report a polyoxometalate (POM)‐based supramolecular dyad, where two platinum‐complex hydrogen evolution catalysts are covalently anchored to an Anderson polyoxomolybdate anion. Supramolecular electrostatic coupling of the system to an iridium photosensitizer enables visible light‐driven hydrogen evolution. Combined theory and experiment demonstrate the multifunctionality of the POM, which acts as photosensitizer/catalyst‐binding‐site([1]) and facilitates light‐induced charge‐transfer and catalytic turnover. Chemical modification of the Pt‐catalyst site leads to increased hydrogen evolution reactivity. Mechanistic studies shed light on the role of the individual components and provide a molecular understanding of the interactions which govern stability and reactivity. The system could serve as a blueprint for multifunctional polyoxometalates in energy conversion and storage.