Cargando…
Ensemble of adapted convolutional neural networks (CNN) methods for classifying colon histopathological images
Deep convolutional neural networks (CNN) manifest the potential for computer-aided diagnosis systems (CADs) by learning features directly from images rather than using traditional feature extraction methods. Nevertheless, due to the limited sample sizes and heterogeneity in tumor presentation in med...
Autor principal: | Albashish, Dheeb |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
PeerJ Inc.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9299234/ https://www.ncbi.nlm.nih.gov/pubmed/35875641 http://dx.doi.org/10.7717/peerj-cs.1031 |
Ejemplares similares
-
SNARE-CNN: a 2D convolutional neural network architecture to identify SNARE proteins from high-throughput sequencing data
por: Le, Nguyen Quoc Khanh, et al.
Publicado: (2019) -
Deep-learning convolutional neural networks with transfer learning accurately classify COVID-19 lung infection on portable chest radiographs
por: Kikkisetti, Shreeja, et al.
Publicado: (2020) -
Effectiveness of convolutional neural networks in the interpretation of pulmonary cytologic images in endobronchial ultrasound procedures
por: Lin, Ching‐Kai, et al.
Publicado: (2021) -
Predicting the effect of variants on splicing using Convolutional Neural Networks
por: Thanapattheerakul, Thanyathorn, et al.
Publicado: (2020) -
Stem cell imaging through convolutional neural networks: current issues and future directions in artificial intelligence technology
por: Ramakrishna, Ramanaesh Rao, et al.
Publicado: (2020)