Cargando…
FG-Droid: Grouping based feature size reduction for Android malware detection
BACKGROUND: The number of applications prepared for use on mobile devices has increased rapidly with the widespread use of the Android OS. This has resulted in the undesired installation of Android application packages (APKs) that violate user privacy or are malicious. The increasing similarity betw...
Autor principal: | |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
PeerJ Inc.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9299264/ https://www.ncbi.nlm.nih.gov/pubmed/35875648 http://dx.doi.org/10.7717/peerj-cs.1043 |
_version_ | 1784750927010332672 |
---|---|
author | Arslan, Recep Sinan |
author_facet | Arslan, Recep Sinan |
author_sort | Arslan, Recep Sinan |
collection | PubMed |
description | BACKGROUND: The number of applications prepared for use on mobile devices has increased rapidly with the widespread use of the Android OS. This has resulted in the undesired installation of Android application packages (APKs) that violate user privacy or are malicious. The increasing similarity between Android malware and benign applications makes it difficult to distinguish them from each other and causes a situation of concern for users. METHODS: In this study, FG-Droid, a machine-learning based classifier, using the method of grouping the features obtained by static analysis, was proposed. It was created because of experiments with machine learning (ML), deep neural network (DNN), recurrent neural network (RNN), long short-term memory (LSTM), and gated recurrent unit (GRU)-based models using Drebin, Genome, and Arslan datasets. RESULTS: The experimental results revealed that FG-Droid achieved a 97.7% area under the receiver operating characteristic (ROC) curve (AUC) score with a vector including only 11 static features and the ExtraTree algorithm. While reaching a high classification rate, only 0.063 seconds were needed for analysis per application. This means that the proposed feature selection method is faster than all traditional feature selection methods, and FG-Droid is one of the tools to date with the shortest analysis time per application. As a result, an efficient classifier with few features, low analysis time, and high classification success was developed using a unique feature grouping method. |
format | Online Article Text |
id | pubmed-9299264 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | PeerJ Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-92992642022-07-21 FG-Droid: Grouping based feature size reduction for Android malware detection Arslan, Recep Sinan PeerJ Comput Sci Artificial Intelligence BACKGROUND: The number of applications prepared for use on mobile devices has increased rapidly with the widespread use of the Android OS. This has resulted in the undesired installation of Android application packages (APKs) that violate user privacy or are malicious. The increasing similarity between Android malware and benign applications makes it difficult to distinguish them from each other and causes a situation of concern for users. METHODS: In this study, FG-Droid, a machine-learning based classifier, using the method of grouping the features obtained by static analysis, was proposed. It was created because of experiments with machine learning (ML), deep neural network (DNN), recurrent neural network (RNN), long short-term memory (LSTM), and gated recurrent unit (GRU)-based models using Drebin, Genome, and Arslan datasets. RESULTS: The experimental results revealed that FG-Droid achieved a 97.7% area under the receiver operating characteristic (ROC) curve (AUC) score with a vector including only 11 static features and the ExtraTree algorithm. While reaching a high classification rate, only 0.063 seconds were needed for analysis per application. This means that the proposed feature selection method is faster than all traditional feature selection methods, and FG-Droid is one of the tools to date with the shortest analysis time per application. As a result, an efficient classifier with few features, low analysis time, and high classification success was developed using a unique feature grouping method. PeerJ Inc. 2022-07-14 /pmc/articles/PMC9299264/ /pubmed/35875648 http://dx.doi.org/10.7717/peerj-cs.1043 Text en ©2022 Arslan https://creativecommons.org/licenses/by/4.0/This is an open access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, reproduction and adaptation in any medium and for any purpose provided that it is properly attributed. For attribution, the original author(s), title, publication source (PeerJ Computer Science) and either DOI or URL of the article must be cited. |
spellingShingle | Artificial Intelligence Arslan, Recep Sinan FG-Droid: Grouping based feature size reduction for Android malware detection |
title | FG-Droid: Grouping based feature size reduction for Android malware detection |
title_full | FG-Droid: Grouping based feature size reduction for Android malware detection |
title_fullStr | FG-Droid: Grouping based feature size reduction for Android malware detection |
title_full_unstemmed | FG-Droid: Grouping based feature size reduction for Android malware detection |
title_short | FG-Droid: Grouping based feature size reduction for Android malware detection |
title_sort | fg-droid: grouping based feature size reduction for android malware detection |
topic | Artificial Intelligence |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9299264/ https://www.ncbi.nlm.nih.gov/pubmed/35875648 http://dx.doi.org/10.7717/peerj-cs.1043 |
work_keys_str_mv | AT arslanrecepsinan fgdroidgroupingbasedfeaturesizereductionforandroidmalwaredetection |