Cargando…
LightFIG: simplifying and powering feature interactions via graph for recommendation
The attributes of users and items contain key information for recommendation. The latest advances demonstrate that better representations can be learned by performing graph convolutions on attribute graph of the user-item pair. Recently proposed models construct graphs that not only connect edges be...
Autor principal: | Di, Weiqiang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
PeerJ Inc.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9299275/ https://www.ncbi.nlm.nih.gov/pubmed/35875639 http://dx.doi.org/10.7717/peerj-cs.1019 |
Ejemplares similares
-
Graph neural networks for preference social recommendation
por: Ma, Gang-Feng, et al.
Publicado: (2023) -
A multi-intent based multi-policy relay contrastive learning for sequential recommendation
por: Di, Weiqiang
Publicado: (2022) -
A Recommender for Research Collaborators Using Graph Neural Networks
por: Zhu, Jie, et al.
Publicado: (2022) -
Attenuated and normalized item-item product network for sequential recommendation
por: Di, Weiqiang, et al.
Publicado: (2022) -
Self-supervised global context graph neural network for session-based recommendation
por: Chu, Fei, et al.
Publicado: (2022)