Cargando…
Fully automated image quality evaluation on patient CT: Multi-vendor and multi-reconstruction study
While the recent advancements of computed tomography (CT) technology have contributed in reducing radiation dose and image noise, an objective evaluation of image quality in patient scans has not yet been established. In this study, we present a patient-specific CT image quality evaluation method th...
Autores principales: | Chun, Minsoo, Choi, Jin Hwa, Kim, Sihwan, Ahn, Chulkyun, Kim, Jong Hyo |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9299323/ https://www.ncbi.nlm.nih.gov/pubmed/35857804 http://dx.doi.org/10.1371/journal.pone.0271724 |
Ejemplares similares
-
Dose reduction potential of vendor-agnostic deep learning model in comparison with deep learning–based image reconstruction algorithm on CT: a phantom study
por: Choi, Hyunsu, et al.
Publicado: (2021) -
Development of deep learning-assisted overscan decision algorithm in low-dose chest CT: Application to lung cancer screening in Korean National CT accreditation program
por: Kim, Sihwan, et al.
Publicado: (2022) -
Incremental Image Noise Reduction in Coronary CT Angiography Using a Deep Learning-Based Technique with Iterative Reconstruction
por: Hong, Jung Hee, et al.
Publicado: (2020) -
Towards standardization of absolute SPECT/CT quantification: a multi-center and multi-vendor phantom study
por: Peters, Steffie M. B., et al.
Publicado: (2019) -
75% radiation dose reduction using deep learning reconstruction on low-dose chest CT
por: Jo, Gyeong Deok, et al.
Publicado: (2023)