Cargando…

Rotation in an Enantiospecific Self‐Assembled Array of Molecular Raffle Wheels

Tailored nano‐spaces can control enantioselective adsorption and molecular motion. We report on the spontaneous assembly of a dynamic system—a rigid kagome network with each pore occupied by a guest molecule—employing solely 2,6‐bis(1H‐pyrazol‐1‐yl)pyridine‐4‐carboxylic acid on Ag(111). The network...

Descripción completa

Detalles Bibliográficos
Autores principales: Meier, Dennis, Adak, Abhishek K., Knecht, Peter, Reichert, Joachim, Mondal, Sourav, Suryadevara, Nithin, Kuppusamy, Senthil Kumar, Eguchi, Keitaro, Muntwiler, Matthias K., Allegretti, Francesco, Ruben, Mario, Barth, Johannes V., Narasimhan, Shobhana, Papageorgiou, Anthoula C.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9299480/
https://www.ncbi.nlm.nih.gov/pubmed/34555241
http://dx.doi.org/10.1002/anie.202107708
Descripción
Sumario:Tailored nano‐spaces can control enantioselective adsorption and molecular motion. We report on the spontaneous assembly of a dynamic system—a rigid kagome network with each pore occupied by a guest molecule—employing solely 2,6‐bis(1H‐pyrazol‐1‐yl)pyridine‐4‐carboxylic acid on Ag(111). The network cavity snugly hosts the chemically modified guest, bestows enantiomorphic adsorption and allows selective rotational motions. Temperature‐dependent scanning tunnelling microscopy studies revealed distinct anchoring orientations of the guest unit switching with a 0.95 eV thermal barrier. H‐bonding between the guest and the host transiently stabilises the rotating guest, as the flapper on a raffle wheel. Density functional theory investigations unravel the detailed molecular pirouette of the guest and how the energy landscape is determined by H‐bond formation and breakage. The origin of the guest's enantiodirected, dynamic anchoring lies in the specific interplay of the kagome network and the silver surface.